IEEE International Conference on Mobility, Sensing and Networking (MSN 2020)

Energy-efficient Trajectory Planning and Speed Scheduling for UAV-assisted Data Collection

> Weidu Ye, Wenjia Wu, Feng Shan, Ming Yang, Junzhou Luo Southeast University, China

Background

Problem Formulation

Solutions

Simulation

Conclusion

Background

Simulation

東南大学

A UAV collects data from ground sensors (GSs) deployed in an open area

Motivation

- Key issues: Limited on-board energy for UAV
- Flight power occupies nearly 1000 times than that of communication power

We focus on minimizing propulsion energy of UAV

- Most work does not consider a fine-grained energy consumption model
- Most of them only consider a distance-related model or duration-related energy consumption models

distance-related energy model

A sophisticated energy model

Zeng Y , Zhang R . Energy-Efficient UAV Communication With Trajectory Optimization[J]. IEEE Transactions on Wireless Communications, 2017:3747-3760.

UAV speed V

Challenges to our problem

1. Minimizing flight energy to collect all data

Best trade-off must be found

2. Trajectory & speed must be considered together

Longer trajectory may save energy

Lower speed may consume more energy

Proper trajectory and speed design must be found

Background

Problem Formulation

Simulation

GSs and UAV

- *m* Ground Sensors (GSs), 1 UAV
- The UAV collects data from GSs when flying in communication range of them

We aim to minimizing UAV's energy consumption by finding a proper trajectory and flight speed, under constraints of data collection and UAV's trajectory

Transmission range and required time

- GS has a transmission range (b_i, d_i)
- Within range, GS i requires t_i time to upload data
- We allow the transmission ranges of GSs are different but they must be adjacent

Key points $D = b \cup d = \{b_1, ..., b_m, d_1, ..., d_m\}$

Trajectory

• Key points D divide the trajectory into 2m+1 parts:

 $L{=}\{L_1, L_2, ... L_n\}$

• Length of curve L_i is l_i , denoted as:

•Length of trajectory between two key points must be larger than their straight distance

$$\int_{L(D_i, D_{i+1})} \mathrm{d}l \ge dis(D_i, D_{i+1}).$$

•All key points must be located on the range circle of each sensor

$$dis(b_i, SN_i) = dis(d_i, SN_i) = Cr_i, i \in \{1, 2, ..., m\}$$

Service time/Deadline constraint

• Service time constraint

$$\int_{L(b_i, d_i)} \frac{\mathrm{d}l}{v(l)} \ge t_i, i \in \{1, 2, ..., m\}$$

• Deadline constraint

$$\int_{L(b_1,d_m)} \frac{dl}{v(l)} \le T.$$

•ETPSS problem: Find the proper speed and trajectory to

- 1. minimize UAV energy consumption
- 2. satisfy distance / location constraint
- 3. satisfy service time / deadline constraint

Background

Problem Formulation

Solutions

Simulation

Conclusion

Framework for ETSO solution

Step 1: Initialize trajectory

• Construct the initial graph

$$G = (V, E)$$

- $V = M \cup \{u\}$ Vertexes: airport and all key points
- $e_{ij} \in E, \{i, j\} \in M$ Edges: lines between two neighboring vertexes
- Use travelling salesman problem (TSP) to initialize the trajectory

- Construct a time-distance diagram
- Satisfying service time / deadline constraints

- *T*(*l*): Service time constraints
- F(l): Deadline constraints
- *L*(*l*): Optimal curve whose slope is reciprocal of speed

Theorem 1: UAV flying in a constant speed consumes less energy than flying in a changing speed.

Theorem 2: Optimal curve property

- *L*(*l*) must intersect with corner of upper bound *T*(*l*) or lower bound *F*(*l*)
- Assume in point d_i , we have $L(d_i) = T(d_i)$, the slope change must be negative
- Assume in point b_i , we have $L(b_i) = T(b_i)$, the slope change must be positive

Step 3: Adjust flight length

Background

Problem Modeling

Solutions

Simulation

Conclusion

Simulation parameters

- GSs are randomly deployed in 2km×2km area
- We evaluate propulsion energy consumption of UAV with compared algorithms

Parameters	Values	Meaning
t_i	[0.5, 2]s	Service time for SN_i
m	[10,1000]	Number of GSs
v	[5,100]	Flight speed of UAV
Н	100m	Flight altitude of UAV
c_1	$9.26 * 10^{-4}$	Parameter of energy model
c_2	2250	Parameter of energy model
Cr	[30,50]m	Communication range for GSs

Table 1: Simulation Parameters

Compared algorithms

- Task Completion Speed (TCS): UAV reaches departing key point d_i at time $t = \sum_{j=1}^{i} t_j$
- NoTAA: The ETSO scheme without Algorithm TAA
- TAA-ALG: The UAV flies along the trajectory worked out by TAA and speed scheduling algorithm using online Algorithm ALG proposed in previous work

Simulation Results

Fig. 7: The impact of GS number on energy consumption with different speed scheduling algorithms

Fig. 8: The impact of GS number on energy consumption with different trajectory design algorithms

Our proposed algorithm ETSO costs less propulsion energy consumption than compared algorithms

Simulation Results

Fig. 9: The impact of GS number on average flight speed

Flight speed in Algorithm ETSO are more stable than that of compared algorithms

Simulation

Conclusion

- We investigate a UAV data collection problem from GSs deployed in an open area.
- We use a sophisticated energy consumption model to illustrate propulsion consumption of UAV.
- We propose a three-step algorithm to jointly design trajectory and schedule flight speed for UAV, in which the second step is proved to be an optimal offline algorithm.
- Simulation results show that our algorithm preforms well in energy-efficiency.

Thank You!

Weidu Ye (ywd@seu.edu.cn)

Southeast University, China