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A B S T R A C T

A novel UAV-aided edge computing system is proposed in this work, where UAV-aided edge nodes are
dispatched to provide communication and computation assistance for completing tasks generated by ground
clients (GCs). We formulate a trajectory design and task allocation problem (TDTAP), aiming at maximizing
the sum of completed tasks of GCs by optimizing the proper trajectory for each UAV and scheduling tasks
from each GC. It is impossible to solve the TDTAP problem directly in polynomial time since UAVs lack all
GCs’ information, e.g., position and amount of tasks. To this end, we put forward an online iterative algorithm
named Maximum UAV trajectory and Task Allocation Algorithm (MUTAA) to solve the TDTAP problem by
jointly optimizing UAVs’ trajectory and GCs’ task scheduling. Unlike existing algorithms, MUTAA can make
real-time decisions for each UAV without acquiring information from all GCs in advance. During each iteration,
MUTAA consists of two sub-algorithms: (1) trajectory design algorithm TDA and (2) task allocation strategy
TAS. Specifically, the preschedule step is used in TDA to find the proper trajectory for UAVs, and a competitive
online algorithm, TAS, is proposed to schedule GCs’ tasks. Theoretical analysis proves that TAS is 𝑒∕(𝑒 − 1)-
competitive, that is, it processes (𝑒− 1)∕𝑒 (approximately 63%) tasks when compared with the optimal offline
solution. Experimental results demonstrate that MUTAA completes 83% data on an average of the optimal
offline solution, illustrating that the proposed algorithm MUTAA can be widely used in time-sensitive scenarios.
1. Introduction

The increasing number of ground clients (GCs), e.g., wearable de-
vices, smartphones, and tablet computers, has produced enormous
computation-intensive tasks, such as video calls, traffic surveillance,
and online games [1]. However, it is generally hard for a GC to
complete the enormous computing tasks in time by itself due to its
limited computing resources on board. Although offloading some tasks
to a base station (BS) can alleviate this problem to some degree, it might
cause congestion and unbearable network delay. By deploying nearby
edge nodes with richer computation resources, the GCs’ burden can be
sharply reduced by offloading tasks to edge nodes [2].

Due to high mobility and flexibility, unmanned aerial vehicles
(UAVs) have been widely adopted in edge computing (EC) [3]. UAV-
aided edge computing has many advantages compared with terrestrial
edge computing. First, UAVs can improve the communication services
for GCs, for they can fly close to GCs and provide line-of-sight (LOS)
communication, which improves the transmission rate between UAVs
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and GCs. Second, unlike terrestrial edge computing, UAVs can offer
timely services due to their mobility to move quickly, which can be
applied in emergencies.

Currently, most works [4–16] in UAV-aided edge computing focus
on finding out an appropriate strategy to minimize the energy con-
sumption [4–10], computation and communication latency [11–13],
or maximize the tasks’ completion amount [14–16] of GCs. In these
works, sophisticated UAV-aided edge computing models are formulated
and transferred as non-convex problems. These problems are solved
by offline algorithms by mathematic tools such as CVX and Gurobi
and achieve near-optimal results. However, using maths tools takes
much computation time, and UAVs can only obtain information from
GCs within their communication range, leading to the result that UAVs
cannot make real-time decisions. Therefore, an online UAV-aided edge
computing strategy that consists of a BS, UAVs, and GCs is needed with
a more significant task completion amount and less execution time to
meet the demand of GCs.
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Fig. 1. An application scenario of UAV-aided edge computing system. Several GCs, such as tachograph devices, are set on vehicles to record real-time traffic video. Using video
processing technology, each device can obtain information on traffic conditions such as traffic congestion, identify the traffic condition and upload the results to keep other
vehicles from traffic congestion, traffic accident, and traffic signal from the recorded video. Due to their limited computation capability, tachograph devices cannot complete
all video-processing tasks alone. They divide the video into several small images by frames and offload some image-processing tasks to the BS and UAV-aided edge nodes to
compute. The computation results (usually much smaller than computation tasks) will be uploaded to the remote cloud center. When other GCs require the traffic information,
they can download the results from the remote cloud center. In this work, we aim to maximize the total completed tasks from GCs by considering the trajectory of each UAV and
task-scheduling strategy for each GC.
One application scenario of the UAV-aided edge computing system
is shown in Fig. 1, which contains GCs, several UAV-aided edge nodes, a
BS, and a central cloud. Specifically, a group of GCs (such as tachograph
devices) is set in vehicles to record the real-time traffic video. Using
video processing technology, a GC can acquire traffic information
such as traffic congestion, traffic accident, and traffic signal from the
recorded video. However, the computation capability of GCs is limited,
and they cannot process the video-processing task alone. The video-
processing task is then divided into several image-processing tasks by
frames, and some of them are offloaded to the BS, or some UAV-aided
edge nodes [17]. The processing results will be uploaded to the cloud
center for traffic monitoring and dangerous driving behavior detection.
Since processing results are much smaller than video-processing tasks,
when other GCs require traffic information, they can download the
results from the remote cloud center. This work aims to maximize the
total processing data generated from GCs by optimizing each UAV’s
trajectories and scheduling task allocation for each GC.

The readers can capture the following challenges we face. (1) Un-
like terrestrial edge computing, UAV-aided edge computing considers
the task scheduling strategy among GCs, UAVs, and the BS but also
considers trajectory design. In practice, UAVs receive tasks offloaded
from GCs while flying simultaneously. Thus, a joint UAV trajectory
and task scheduling strategy should be proposed in this work. (2) Most
existing works in UAV-aided edge computing systems do not consider
the centralized BS. A few works with BS exist, but they solve UAV
trajectory and task scheduling problems in offline scenarios, where
UAVs must obtain information in advance from GCs, such as their
location and residual task amount. UAVs usually lack the information
above, and thus an online strategy needs to be implemented in the
corresponding scenarios.

Rising to the above challenges, this paper proposes an online algo-
rithm named Maximum UAV Trajectory and Task Allocation Algorithm
(MUTAA) to optimize UAVs’ trajectories and schedule GCs’ tasks. The
main contributions are listed as follows.

• This paper presents a novel UAV-aided edge computing scenario,
where a BS, UAVs, and GCs cooperatively process tasks generated
by GCs. Unlike previous works, UAVs do not know locations and
2

total task amounts of GCs in advance, thus needing real-time de-
cisions. We consider UAVs’ trajectories and GCs’ task scheduling
and formulate a TDTAP problem to maximize the task-processing
amount of GCs.

• We propose an online algorithm named MUTAA to solve TDTAP,
and MUTAA is consisted of two sub-algorithms to optimize UAVs’
trajectories and schedule GCs’ tasks, respectively. Specifically, the
trajectory design algorithm TDA is first proposed to optimize
trajectories of UAVs by using preschedule strategy, which im-
proves the task processing amount of GCs. Then a competitive
online algorithm, TAS, is presented to schedule GCs’ tasks. We
utilize primal–dual technology in TAS and prove that TAS is 𝑒

𝑒−1 -
competitive, that is, it completes at least 𝑒−1

𝑒 (approximately 63%)
data as much as the optimal offline solution through theoretical
analysis.

• The task-allocation experimental results demonstrate that MUTAA
completes an average 83% offloading task amount of the optimal
offline policy but takes much less execution time. Besides, the
trajectory design experimental results show that UAVs have a
shorter flight distance in MUTAA than the compared algorithm.

The rest of this paper is organized as follows. Section 2 introduces
related works on UAV-aided edge computing and task allocation strate-
gies in UAV-aided edge computing. Section 3 presents the system model
and then formulates the TDTAP problem. Section 4 proposes an online
algorithm MUTAA to solve the TDTAP problem. Section 5 conducts ex-
periments to verify the performance of our algorithm. Finally, Section 6
concludes the work.

2. Related works

This section reviews recent related works on UAV-aided edge com-
puting, task dispatching and scheduling strategy, and task dispatching
and scheduling strategy in UAV-aided edge computing.

2.1. UAV-aided edge computing

Many works exist concentrating on designing a UAV-aided edge
computing system to offload the computing tasks generated by GCs.
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Yong et al. [3] investigated many recent works in UAV-aided edge
computing and declared that UAV-aided edge computing could process
more tasks than traditional terrestrial edge computing. Hu et al. [18]
assumed that computing tasks generated from each GC have their
deadlines and aimed to minimize the energy consumption of all GCs
by optimizing UAV’s trajectory. Zhou et al. [19] combined a UAV-
enabled wireless communication system with wireless power transfer
(WPT) to collect data from ground IoT devices, where the UAV can
harvest energy to extend their working time. On this basis, they aimed
to maximize the transmission rate of all IoT devices while considering
the energy consumption of the UAV.

Some works utilize UAV swarms to assist GCs in processing their
tasks cooperatively. Cao et al. [20] novelly developed a UAV-aided
edge computing system by utilizing swarm intelligence technology,
where several UAVs were dispatched to serve large-scale IoT devices.
To minimize the total energy consumption cost by UAVs and IoT
devices, an offline strategy is proposed to optimize the trajectory of
each UAV and schedule a task-allocation strategy for each IoT device.
Jeong et al. [21] mounted computing edge nodes on UAVs and as-
sumed them as mobile cloudlets to process tasks from ground users in
emergency scenarios such as earthquakes and fire disasters. A jointly
UAV-trajectory and task-allocation algorithm was also proposed in this
paper to minimize the total delay of all computing tasks generated by
ground users.

Most of these works study edge computing scenarios consisting of
UAV-aided edge nodes and GCs. However, the edge computing system
should consider the centralized BS in practicality. In this work, a three-
layer scenario is constructed consisting of a BS, several UAVs, and GCs
to optimize UAVs’ trajectories and GCs’ task scheduling jointly.

2.2. Task dispatching and scheduling strategy

Task dispatching and scheduling strategy focus on dividing the com-
putation tasks into several sub-tasks and scheduling the sub-tasks to the
proper device to minimize the task-completion time. Deng et al. [22]
constructed a system contains several wireless APs to process data
uploaded from users, and proposed an online AP-user association al-
gorithm to maximize the amount of offloaded data. Meng et al. [23]
proposed an online task dispatching algorithm that maximizes the total
task processing amount for GCs. Specifically, each GC divides the task
into multiple subtasks according to the task type (e.g., video-processing
tasks, speech recognition tasks) and uploads their subtasks to different
edge nodes for task processing. Tan et al. [24] proposed a system that
dispatches and schedules that the job response time is minimized. In
their policies, the job is divided into several sub-jobs according to time
slots, and each sub-jobs can be severed by the edge server instantly.
The processing results are then returned to GCs.

Besides, some video-segmentation works divide a video into several
images by frames. Song et al. [25] proposed a video-segmentation
model that divided the whole video into several small images by
frames. Each frame is processed separately to shorten the total pro-
cessing time of the video. Liu et al. [26] proposed an online semi-
supervised video segmentation approach named GCseg to deal with
video-processing tasks in a short time. The GCseg contained a co-
segmentation module to divide the video into several small images
by frames and then process these images simultaneously. Quellec
et al. [27] presented a solution to automatically categorize surgical
tasks in real-time during the surgery using video recording. It used
video segmentation to divide video into several images and analyzed
the current surgery by comparing archived images. The solution could
3

provide valuable recommendations to less experienced surgeons.
2.3. Task dispatching and scheduling strategy in UAV-aided edge computing
network

Several works combine task dispatching and scheduling strategies in
UAV-aided edge computing [13,28–30]. Most existing works construct
a joint UAV trajectory and task allocation problem and use mathe-
matical tools such as Matlab and CVX to solve the problem. A novel
UAV-aided edge computing scenario including the UAV and several
edge nodes was proposed in work [13] to collaboratively provide
computation services for the GCs. They formulated the maximum clique
technology to plan a proper trajectory for each UAV and then utilized
a task-allocation strategy to offload GCs’ tasks. Li et al. [28] studied
a UAV-aided mobile edge computing scenario to minimize the task
completion time of the UAV by deciding the optimal processing method
for tasks from each user. An algorithm using reinforcement learning
was proposed to maximize the task processing of all GCs in their work,
and experimental results show that their algorithm completed 90% of
tasks. Liu et al. [29] mounted the edge node on each UAV to monitor
the real-time traffic and proposed an algorithm that minimizes the total
required energy by jointly optimizing the CPU frequencies. The offload-
ing amount, transmit power, and UAV’s trajectory. A UAV-aided edge
computing system was proposed in work [8], where a sophisticated
offloading model was established to allocate computing tasks of ground
sensors to the UAV or the centralized BS. Zhang et al. [30] equipped
a MEC server on a UAV to serve several IoT devices. Each IoT device
was assumed to contain a time-critical task to complete, and the author
proposed a near-optimal solution to minimize the total latency time of
all IoT devices.

However, most of these works considered an offline framework
where UAV obtains information from GCs in advance, which did not
cater for the situations requiring quick response [13,28,29]. This paper
proposes a real-time UAV-aided edge computing system where UAVs
and GCs have to make real-time decisions.

3. System model and problem formulation

In this section, we present the system model and formulate the
trajectory design and task allocation problem TDTAP, where the task
processing amount of all GCs is maximized under the constraint of the
UAV’s trajectory and computation capability and GCs.

3.1. System model

A UAV-aided edge computing system is established, consisting of
𝑚 GCs (denoted as 𝐼 = {𝑖1, 𝑖2, 𝑖3,… , 𝑖𝑚}), 𝑛 UAVs (denoted as 𝐽 =
𝑗1, 𝑗2, 𝑗3,… , 𝑗𝑛}), and a BS 𝐵𝑏.

We define 𝑇 as the total time in consideration, and 𝑇 = 𝛥𝑡 ⋅𝑠, where
𝑡 is the length of each time slot. The value of 𝛥𝑡 is small enough that
AVs and GCs are assumed to keep stationary during a single time slot,
nd 𝑠 represents the number of time slots during the period 𝑇 . Symbol

is the set of time slot, denoted as 𝐾 = {𝑘1, 𝑘2,… , 𝑘𝑠}.
For each GC 𝑖 ∈ 𝐼 , it is assumed to move dynamically and its

oordinate in time slot 𝑘 is defined as 𝑢𝑖𝑘 = (𝑠𝑖𝑘, 𝑡𝑖𝑘, 0), and has a total
mount of 𝑐𝑖 task required to be completed. For each UAV 𝑗 ∈ 𝐽 , its
oordinate in time slot 𝑘 is defined as 𝑞𝑗𝑘 = (𝑠𝑗𝑘, 𝑡𝑗𝑘,𝐻), where 𝐻
s the flight altitude of UAV. We define 𝑣𝑚𝑎𝑥 as the maximum flight
peed of UAVs, where the position of each UAV between two adjacent
lots cannot exceed 𝑣𝑚𝑎𝑥. Each UAV 𝑗 contains a communication range
𝑗 and only serves GC 𝑖 within the communication range 𝑅𝑗 . The

ocation of BS 𝐵𝑏 = (𝑠𝑏, 𝑡𝑏, 0) is set in the center of the system, and
he computation capability of BS is larger than those of UAVs and GCs.

There are mainly three ways for GC 𝑖 to process its task.
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Table 1
Key parameter definitions.

Parameter Definition

𝐼 Set of GCs
𝐽 Set of UAVs
𝐾 Set of time slots
𝑖 Single GC
𝑗 Single UAV
𝑏 BS
𝑘 Single time slot
𝑢𝑖𝑘 Location of GC 𝑖 in slot 𝑘

𝑞𝑗𝑘 Location of UAV 𝑗 in slot 𝑘

𝑐𝑙𝑜𝑐𝑖𝑘 Local computation rate for GC 𝑖 in slot 𝑘

𝑐𝐵𝑆𝑖𝑘 Transmission rate for GC 𝑖 to the BS in slot 𝑘

𝑐𝑈𝐴𝑉
𝑖𝑗𝑘 Transmission rate for GC 𝑖 to UAV 𝑗 in slot 𝑘

𝑥𝑈𝐴𝑉
𝑖𝑗𝑘 Time portion for UAV 𝑗 to serve GC 𝑖 in slot 𝑘

𝑦𝐵𝑆𝑖𝑏𝑘 Time portion for BS 𝑏 to serve GC 𝑖 in slot 𝑘

𝑧𝑙𝑜𝑐𝑖𝑘 Time portion for GC 𝑖 to compute locally in slot 𝑘

𝐷𝑙𝑜𝑐
𝑖𝑘 Local computation amount of GC 𝑖 in slot 𝑘

𝐷𝐵𝑆
𝑖𝑏𝑘 BS-offloading amount of GC 𝑖 in slot 𝑘

𝐷𝑈𝐴𝑉
𝑖𝑗𝑘 UAV-offloading amount from GC 𝑖 to UAV 𝑗 in slot 𝑘

𝑅𝑗 Communication range for UAV 𝑗

𝑐𝑖 Total task amount for GC 𝑖

𝑣𝑚𝑎𝑥 Maximum flight distance of each UAV
𝑑𝑖𝑠𝑚𝑖𝑛 Safety flight distance between neighbor UAVs

3.1.1. Offloading to UAV
The channel gain ℎ𝑖𝑗𝑘 between UAV 𝑗 and GC 𝑖 in slot 𝑘 is defined

as:

ℎ𝑖𝑗𝑘 = 𝛽0
‖𝑞𝑗𝑘−𝑢𝑖𝑘‖22+𝐻

2 (1)

where 𝛽0 is the received power in reference distance (e.g., 1 m) between
transmitter and receiver. ‖.‖ denotes the L2 norm.

The transmission rate between GC 𝑖 and UAV 𝑗 is defined as 𝑐𝑈𝐴𝑉
𝑖𝑗𝑘

when GC 𝑖 offloads tasks to UAV 𝑗, whose value is:

𝑐𝑈𝐴𝑉
𝑖𝑗𝑘 = 𝐵 ⋅ 𝑙𝑜𝑔2(1 +

𝑃 ⋅ℎ𝑖𝑗𝑘
𝜎2

) (2)

where 𝑃 is the constant transmit power of GC 𝑖. 𝜎2 is the Gaussian noise
in the environment.

We define a time portion set 𝑥 representing the portion of time that
GCs offloaded the task to UAV, and variable 𝑥𝑈𝐴𝑉

𝑖𝑗𝑘 ∈ 𝑥 is ranging from
[0, 1], denoting that when GC 𝑖 offloads the task to UAV 𝑗 in slot 𝑘.

Hence the UAV-offloading amount 𝐷𝑈𝐴𝑉
𝑖𝑗𝑘 from GC 𝑖 to UAV 𝑗 in slot

is:
𝑈𝐴𝑉
𝑖𝑗𝑘 = 𝑥𝑈𝐴𝑉

𝑖𝑗𝑘 ⋅ 𝑐𝑈𝐴𝑉
𝑖𝑗𝑘 ⋅ 𝛥𝑡 (3)

We do not consider the computation capability of UAVs, that is
ecause, the computation capability of a UAV is usually larger than
ts transmission rate. For instance, NVIDIA has developed the Jetson
X2 chip. This chip can work out an average of 225 figures per second
17] and has been widely used in UAVs. Besides, the transmission rate
f UAV is more valuable, for UAVs are usually dispatched in locations
hat are far from the BS but with plenty of GCs around. On this basis, we
ainly consider the transmission rate of UAVs in this work, i.e., 𝐷𝑈𝐴𝑉

𝑖𝑗𝑘
oes not contain the computation capability of UAV.

.1.2. Offloading to BS
Similar to previous subsection, the channel gain ℎ𝑖𝑏𝑘 between BS 𝑏

nd GC 𝑖 in slot 𝑘 is defined as:

𝑖𝑏𝑘 = 𝛽0
‖𝐵𝑏−𝑢𝑖𝑘‖22+𝐻

2 (4)

The transmission rate between GC 𝑖 and BS 𝑏 is defined as 𝑐𝐵𝑆𝑖𝑏𝑘 ,
whose value is:
𝐵𝑆 𝑃 ⋅ℎ𝑖𝑏𝑘 (5)
4

𝑐𝑖𝑏𝑘 = 𝐵 ⋅ 𝑙𝑜𝑔2(1 + 𝜎2
)

We define a time portion set 𝑦 representing the portion of time that
GCs offloaded the task to the BS, and variable 𝑦𝐵𝑆𝑖𝑏𝑘 ∈ 𝑦 is ranging from
[0, 1], denoting the time portion that GC 𝑖 offloads the task to the BS in
slot 𝑘.

The BS-offloading amount 𝐷𝐵𝑆
𝑖𝑏𝑘 of GC 𝑖 in slot 𝑘 can be defined as:

𝐷𝐵𝑆
𝑖𝑏𝑘 = 𝑦𝐵𝑆𝑖𝑏𝑘 ⋅ 𝑐𝐵𝑆𝑖𝑏𝑘 ⋅ 𝛥𝑡 (6)

We ignore the computation time of BS, i.e., 𝐷𝐵𝑆
𝑖𝑏𝑘 does not take

the computation capability into consideration. The reason is that the
computation capability of BS is much larger than that of UAVs and
GCs, causing the result that computation time of BS is very short.
Therefore, the processing time of BS is mainly affected by transmission
time between the BS and GCs.

3.1.3. Local computing
The computation capability of GC 𝑖 ∈ 𝐼 is defined as 𝑐𝑙𝑜𝑐𝑖𝑘 , when GC

𝑖 processes tasks by itself. Similar to previous subsections, we define a
time portion set 𝑧 representing the portion of time that GCs that process
tasks by themselves, and variable 𝑧𝑙𝑜𝑐𝑖𝑘 ∈ 𝑧 ranges from [0, 1], denoting
the time portion that GC 𝑖 process tasks in local at slot 𝑘.

Thus, the local computation amount 𝐷𝑙𝑜𝑐
𝑖𝑘 of GC 𝑖 in slot 𝑘 is defined

as:

𝐷𝑙𝑜𝑐
𝑖𝑘 = 𝑧𝑙𝑜𝑐𝑖𝑘 ⋅ 𝑐𝑙𝑜𝑐𝑖𝑘 ⋅ 𝛥𝑡 (7)

where 𝑐𝑙𝑜𝑐𝑖𝑘 is the computation capability for GCs to compute the task
locally.

Different from UAVs and the BS, each GC has to pre-process the
recorded videos before offloading them to UAVs and the BS. For
instance, in our scenario, each GC has to divide a recorded video
into several small pieces by frames, this procedure may cost much
time [26,27]. Therefore, when GCs offload a task to UAVs or the BS,
the communication module of GCs uploads their tasks to UAVs or the
BS, and the computation module has to divide the upcoming video into
several small videos. To this end, GCs do not have time to compute
locally while offloading tasks to UAVs or the BS.

Overall, we conclude all the parameters in Table 1.

3.2. Problem formulation

In this section, constraints on GCs, UAVs, and the BS in UAV-aided
edge computing systems are first introduced, and then the TDTAP
problem is proposed.

Definition 1 (Slot Allocation Constraints). The slot allocation constraints
explain the relationship of time slot allocation among UAVs, the BS, and
GCs, which limit the computation time for each device.

First, for each UAV, the constraint is written in Eq. (C1):
∑𝑚

𝑖=1 𝑥
𝑈𝐴𝑉
𝑖𝑗𝑘 ≤ 1 (C1)

where for each UAV 𝑗 at time slot 𝑘 ∈ 𝐾, the total time portion
allocated by UAV 𝑗 to process all GCs’ tasks cannot exceed the length
of a single slot.

Second, for each BS, the constraint is written in Eq. (C2):
∑𝑚

𝑖=1 𝑦
𝐵𝑆
𝑖𝑏𝑘 ≤ 1 (C2)

where at each time slot 𝑘 ∈ 𝐾 for BS 𝑏, the total time portion allocated
by BS 𝑏 to process all GCs’ tasks cannot exceed the length of a single
time slot.

Finally, for each GC 𝑖, according to the assumption that GCs cannot
compute and offload the tasks simultaneously, the constraint is written
in Eq. (C3)
∑𝑛

𝑗=1 𝑥
𝑈𝐴𝑉
𝑖𝑗𝑘 + 𝑦𝐵𝑆𝑖𝑏𝑘 + 𝑧𝑙𝑜𝑐𝑖𝑘 ≤ 1 (C3)

where at each time slot 𝑘 ∈ 𝐾 for each GC 𝑖, the total time portion
allocated from all UAVs, BS 𝑏, and GC itself to process GC 𝑖’s tasks

cannot exceed the length of a single slot.
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Definition 2 (UAV’s Trajectory Constraints). The UAV’s trajectory con-
traints illustrate the flight state of each UAV, which limit the maximum
light speed, communication range, and safety distance.

First, at each time slot 𝛥𝑡, a maximum speed of each UAV 𝑗 cannot
surpass 𝑣𝑚𝑎𝑥, shown in (C4):

‖𝑞𝑗(𝑘+1) − 𝑞𝑗𝑘‖ ≤ 𝑣𝑚𝑎𝑥 ⋅ 𝛥𝑡, (C4)

where 𝑞𝑗𝑘 represents the position of UAV 𝑗 at time slot 𝑘.
Second, at each time slot 𝑘 ∈ 𝐾, if GC 𝑖 offloads tasks to UAV 𝑗, the

distance between GC 𝑖 and UAV 𝑗 cannot exceed the communication
range of UAV 𝑅𝑗 , shown in (C5):

𝑥𝑈𝐴𝑉
𝑖𝑗𝑘 ⋅ ‖𝑞𝑗𝑘 − 𝑢𝑖𝑘‖ ≤ 𝑅𝑗 , (C5)

Third, at each time slot 𝑘 ∈ 𝐾, each UAV 𝑗 should keep a distance
from other UAVs for safety. We assume {𝑎, 𝑏} ∈ 𝐽 are two different
UAVs, shown in (C6):

‖𝑞𝑎𝑘 − 𝑞𝑏𝑘‖ ≥ 𝑑𝑖𝑠𝑚𝑖𝑛, (C6)

Definition 3 (Maximum Amount Constraints). The Maximum amount
constraints describe the maximum task processing amount of GC 𝑖 ∈ 𝐼 ,
which restricts the total task processing amount of each G, that is
∑𝑛

𝑗=1
∑𝑠

𝑘=1 𝐷
𝑈𝐴𝑉
𝑖𝑗𝑘 +

∑𝑠
𝑘=1 𝐷

𝐵𝑆
𝑖𝑏𝑘 +

∑𝑠
𝑘=1 𝐷

𝑙𝑜𝑐
𝑖𝑘 ≤ 𝑐𝑖. (C7)

where the total amount of tasks computed by UAVs, the BS, and GCs
cannot exceed the maximum task amount of GC 𝑖.

According to above definitions, the total task processing amount
𝐷𝑠𝑢𝑚 of GC 𝑖 at period 𝑇 is

𝐷𝑠𝑢𝑚 =
∑𝑚

𝑖=1
∑𝑛

𝑗=1
∑𝑠

𝑘=1 𝐷
𝑈𝐴𝑉
𝑖𝑗𝑘

+
∑𝑚

𝑖=1
∑𝑠

𝑘=1 𝐷
𝐵𝑆
𝑖𝑏𝑘

+
∑𝑚

𝑖=1
∑𝑠

𝑘=1 𝐷
𝑙𝑜𝑐
𝑖𝑘

(8)

We define the trajectory design and task allocation problem (TD-
TAP) as follows:

Definition 4 (TDTAP Problem). Given 𝐼 GCs, 𝐽 UAV-aided edge com-
puting nodes, and a BS, the TDTAP problem is proposed for optimizing
the trajectory of each UAV and scheduling task allocation of each
GC to maximize the total task processing amount of GCs in period 𝑇
(Eq. (C5)). Meanwhile, the problem needs to satisfy the slot allocation
constraints Eqs. (C1)–(C3), UAV trajectory constraints Eqs. (C4)–(C6), and
maximum amount constraints Eq. (C7).

The TDTAP problem is consequently written in P1:

(𝑃 1) ∶ max
𝑥,𝑦,𝑧,𝑐𝑈𝐴𝑉

𝑖𝑗𝑘 ,𝑞
𝐷𝑠𝑢𝑚 (9)

s.t. (C1) − (C7) (10)

Mathematic tools cannot solve the problem above since trajectory
variable 𝑞 and transmission rate 𝑐𝑈𝐴𝑉

𝑖𝑗𝑘 are unknown. Thus, we propose
an online algorithm to solve the problem in the following section.

4. Online algorithms to solve TDTAP

In this section, we propound an online algorithm, MUTAA (Sec-
tion 4.1), to solve the TDTAP problem by jointly optimizing UAVs’
trajectory and scheduling GCs’ tasks. MUTAA is an iterative algorithm
with two steps in each iteration: Section 4.2 optimizes UAV’s trajectory
by algorithm TDA and Section 4.3 schedules GCs’ tasks by algorithm
TAS. MUTAA iterates in all slots in set 𝐾, where algorithm TDA and
5

TAS run alternatively to achieve the final results.
4.1. Online algorithm MUTAA

Different from algorithms that design UAVs’ trajectories at each
time slot, MUTAA uses preschedule steps to find reasonable locations
of UAVs (satisfying constraint (C4)∼(C6)) in the next 𝑠𝑡𝑒𝑝 (𝑠𝑡𝑒𝑝 > 1)
ime slots for each iteration.

The advantage of using the preschedule step is that it can improve
he task process amount of GCs while shortening the total flight dis-
ance of UAVs simultaneously. Since the preschedule step considers
everal time slots instead of a single slot, it could shorten the total flight
ength for UAVs by preventing them from flying back and forth.

The pseudo-code for MUTAA is shown in Algorithm 1.

Algorithm 1: MUTAA (𝑈,𝑅,𝐾)
Input: Initial location 𝐼𝑖 of GCs 𝑖
Communication range 𝑅𝑗 of UAV 𝑗
Total task amount 𝑐𝑖 of GC 𝑖
Prescheduled steps for each iteration 𝑠𝑡𝑒𝑝
Output: Trajectory for each UAV 𝑞
Task allocation variable 𝑥, 𝑦, 𝑧
Total task processing amount 𝑑𝑎𝑡𝑎

1 Initialize trajectory 𝑞 and task allocation variables 𝑥, 𝑦, 𝑧
2 𝑡𝑎𝑠𝑘 = 𝑐;
3 while 𝑘 ⋅ 𝛥𝑡 ≤ 𝑇 do
4 Update GCs’ location 𝑢𝑖𝑘
5 Using algorithm 2 to optimize UAVs’ trajectories 𝑞
6 Using algorithm 3 to calculate the total task processing

amount 𝑑𝑎𝑡𝑎 and corresponding variables 𝑥, 𝑦, 𝑧.
7 𝑘 = 𝑘 + 𝑠𝑡𝑒𝑝
8 end

Algorithm 1 iterates each time slot 𝑘 ∈ 𝐾, collects the current infor-
ation (including UAVs’ current locations and residual tasks’ amount

or GCs), and utilizes the trajectory design algorithm (Algorithm 2) to
ptimize the trajectory of each UAV. Then, a task allocation algorithm
Algorithm 3) is proposed to offload GCs’ tasks to UAV-aided edge
odes or the centralized BS. The MUTAA executes Algorithm 2 and
lgorithm 3 iteratively until 𝑘 = 𝑇 ∕𝛥𝑡.

.2. Trajectory design algorithm

In this subsection, we propose a trajectory design algorithm named
DA for each UAV 𝑗 between time slot 𝑘 and 𝑘 + 𝑠𝑡𝑒𝑝 − 1.

Detailed pseudo-code is given in Algorithm 2:
Before introducing Algorithm 2, we first proposed a concept of

residual transmission rate, defined as follows.

Definition 5 (Residual Transmission Rate). The residual transmission
rate is a parameter that assists each UAV in finding proper GCs with
maximum transmission rate and residual GCs’ tasks, denoted as 𝐶𝑈𝐴𝑉

𝑖𝑗𝑘 ⋅
𝑡𝑎𝑠𝑘𝑖.

Since residual task amount 𝑡𝑎𝑠𝑘𝑖 is dynamically changed in each
ime slot, e.g., when UAV serves GC 𝑖 in slot 𝑡, value of 𝑡𝑎𝑠𝑘𝑖 and
𝑐𝑈𝐴𝑉
𝑖𝑗𝑘 ⋅ 𝑡𝑎𝑠𝑘𝑖 will be smaller, leading to the fact that UAV will find

another user with higher 𝑐𝑈𝐴𝑉
𝑖𝑗𝑘 ⋅ 𝑡𝑎𝑠𝑘𝑖.

The basic idea of Algorithm 2 is pre-scheduling UAVs’ trajectory
between time slot 𝑘 and 𝑘 + 𝑠𝑡𝑒𝑝 − 1 while satisfying the constraints
of UAV’s maximum flight speed (C4), UAV maximum communication
range (C5), and safety flight distance between two neighboring UAVs
(C6) proposed in Section 3.2. Then, the algorithm adjusts UAVs’ trajec-
tories calculated in the step above to shorten the total flight distance
of UAVs.

Specifically, Algorithm 2 first finds candidate locations of UAVs

from GCs’ location 𝑢 that satisfies maximum speed constraint (C4)
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Algorithm 2: TDA (𝑈,𝑅,𝐾)
Input: Initial location of GCs 𝑢𝑖𝑘
Communication range of UAV 𝑅𝑗
Current time slot 𝑘
Residual task amount 𝑡𝑎𝑠𝑘
Initial location for UAVs 𝑞𝑖1
Output: UAVs’ trajectory 𝑞

1 𝑇 𝑒𝑚𝑝 = 0
2 for 𝑗 ∈ 𝐽 do
3 for st=1 to step do
4 𝐶𝑎𝑛𝑑 = {𝑢𝑖𝑘 | 𝑑𝑖𝑠(𝑢𝑖𝑘, 𝑞𝑗𝑘) ≤ 𝑣𝑚𝑎𝑥}, 𝑖 ∈ 𝐼
5 Delete 𝑖 ∈ 𝐶𝑎𝑛𝑑 that does not satisfy the safety-distance

constraint (C6);
6 for 𝑗′ ∈ 𝐶𝑎𝑛𝑑 do
7 𝑠𝑒𝑟𝑣𝑒𝑑 = {𝑢𝑖𝑘 | 𝑑𝑖𝑠(𝑢𝑖𝑘, 𝐶𝑎𝑛𝑑𝑗′ ) ≤ 𝑅𝑗′}, 𝑖 ∈ 𝐼
8 Calculate the corresponding transmission rate 𝑐𝑈𝐴𝑉

𝑖𝑗′𝑘 .
9 end
10 𝑗∗ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑐𝑖𝑗∗𝑘 ⋅ 𝑡𝑎𝑠𝑘𝑖), 𝑖 ∈ 𝑠𝑒𝑟𝑣𝑒𝑑, 𝑗∗ ∈ 𝐶𝑎𝑛𝑑
11 𝑡𝑒𝑚𝑝𝑗(𝑘+𝑠𝑡−1) = 𝐶𝑎𝑛𝑑𝑗∗
12 end
13 Adjust 𝑡𝑒𝑚𝑝𝑗(𝑘+𝑠𝑡−1) in order to shorten the flight length
14 𝑞𝑗 = 𝑞𝑗 ∪ {𝑡𝑒𝑚𝑝𝑗𝑘, ..., 𝑡𝑒𝑚𝑝𝑗(𝑘−1+𝑠𝑡)};
15 end

(line 4) and saves in the candidate set 𝐶𝑎𝑛𝑑. Then, all the locations
𝑢𝑖𝑘 in set 𝑐𝑎𝑛𝑑 are checked, and some that do not obey the safety
distance constraint (C6) are deleted from 𝐶𝑎𝑛𝑑. Afterward, Algorithm
2 retrieves all UAVs’ candidate locations 𝑗′ in set 𝐶𝑎𝑛𝑑 and selects one
with maximum residual transmission rate to GCs (line 6 to line 10). The
selected UAVs’ location at the current slot 𝑘+ 𝑠𝑡−1 is then saved in set
𝑡𝑒𝑚𝑝 as the candidate UAV’s trajectory (line 11). When all preschedule
steps end, UAVs’ locations 𝑡𝑒𝑚𝑝 are modified to shorten the total flight
distance of each UAV by resorting to locations in set 𝑡𝑒𝑚𝑝.

Lemma 1. For each UAV 𝑗 ∈ 𝐽 , the time complexity of TDA is 𝑂(𝑚2) step.

roof. We analyze the time complexity for each UAV 𝑗 ∈ 𝐽 , for TDA
uns in parallel for each UAV.

First, algorithm TDA first iterates steps 𝑠𝑡 ∈ [1, 𝑠𝑡𝑒𝑝] to work out the
andidate locations for UAV 𝑐𝑎𝑛𝑑𝑗 (line 3 to line 12), time complexity
f this loop is 𝑂(𝑠𝑡𝑒𝑝). Second, In lines 4 and line 5, TDA retrieves the
ocations of all GCs to find the initial candidate set 𝐶𝑎𝑛𝑑 and deletes
Cs that do not satisfy the constraint (C6), and the time complexity of

his step is 𝑂(𝑚). Then, from line 6 to line 10, TDA iterates each element
n setting Cand to calculate the corresponding transmission rate 𝑐𝑈𝐴𝑉

𝑖𝑗′𝑘

nd select GC 𝑖 with the maximum residual rate (line 10). The time
omplexity of this step is 𝑂(𝑚). Finally, algorithm TDA sorts the set
𝑒𝑚𝑝 and outputs the final trajectory for UAV 𝑗. The time complexity
or this step is 𝑂(𝑚 ⋅ 𝑙𝑜𝑔2 𝑚).

Overall, for each UAV 𝑗 ∈ 𝐽 , time complexity of TDA is 𝑂(𝑠𝑡𝑒𝑝 ⋅ (𝑚+
𝑚) + 𝑚 ⋅ 𝑙𝑔𝑚), which is 𝑂(𝑚2). ■

4.3. Task allocation strategy

After using the trajectory design algorithm proposed in Section 4.2,
UAVs’ trajectory 𝑞𝑗𝑘 in slot 𝑘 can be calculated. We now focus on the
(P2) problem. (P2) is the subproblem of TDTAP, aiming at maximize
the task completion rate of all GCs, under the slot allocation constraints
(Eqs. (C1) (C2) (C3)) and the maximum amount constraints (Eq. (C7)).

(𝑃 2) ∶max
𝑥,𝑦,𝑧

𝐷𝑠𝑢𝑚 (11)

s.t. (C1) (C2) (C3) (C7) (12)
6

𝑥𝑈𝐴𝑉
𝑖𝑗𝑘 , 𝑦𝐵𝑆𝑖𝑏𝑘 , 𝑧

𝑙𝑜𝑐
𝑖𝑘 ≥ 0 (13)

Offline algorithms cannot solve the problem (P2) directly because
UAVs are unable to obtain GC’s location and their task amount until
they fly close and get connections with them. Thus, an online algorithm
must be proposed.

To better illustrate our algorithm, we define 𝑐𝑖ℎ𝑘 = 𝑐𝑈𝐴𝑉
𝑖𝑗𝑘 ∪𝑐𝐵𝑆𝑖𝑏𝑘 ∪𝑐𝑙𝑜𝑐𝑖𝑘 ,

where ℎ = {0, [1, 𝑛], 𝑛 + 1} means all devices including GC itself, UAVs,
and the BS, specifically:

𝑐𝑖ℎ𝑘 =

⎧

⎪

⎨

⎪

⎩

𝑐𝑙𝑜𝑐𝑖𝑘 , ℎ = 0,

𝑐𝑈𝐴𝑉
𝑖𝑗𝑘 , ℎ = [1, 𝑛].

𝑐𝐵𝑆𝑖𝑏𝑘 , ℎ = 𝑛 + 1.

(14)

Similar to 𝑐𝑖ℎ𝑘, we define 𝑥𝑖ℎ𝑘 = 𝑥𝑈𝐴𝑉
𝑖𝑗𝑘 ∪ 𝑥𝐵𝑆𝑖𝑏𝑘 ∪ 𝑥𝑙𝑜𝑐𝑖𝑘 , which is written

in Eq. (15).

𝑥𝑖ℎ𝑘 =

⎧

⎪

⎨

⎪

⎩

𝑥𝑙𝑜𝑐𝑖𝑘 , ℎ = 0,

𝑥𝑈𝐴𝑉
𝑖𝑗𝑘 , ℎ = [1, 𝑛],

𝑥𝐵𝑆𝑖𝑏𝑘 , ℎ = 𝑛 + 1.

(15)

Referring to related work [22,31], we apply the primal–dual tech-
nology to solve the problem (P2), where the dual problem of (P2)
can be transferred as (D2) and 𝛼, 𝛽, 𝛾, and 𝜎 are corresponding dual
variables to constraint (C1)∼(C3) and (C7) in problem (P2). We propose
a competitive online algorithm TAS in Algorithm 3.

(𝐷2) ∶ min
𝛼,𝛽,𝛾

𝑚
∑

𝑖=1
𝑐𝑖𝛼𝑖 +

𝑛
∑

𝑗=1

𝑠
∑

𝑘=1
𝛽𝑗𝑘 +

𝑠
∑

𝑘=1
𝛾𝑘 +

𝐼
∑

𝑖=1

𝑠
∑

𝑘=1
𝜎𝑖𝑘 (16)

s.t. 𝑐𝑈𝐴𝑉
𝑖𝑗𝑘 ⋅ 𝛼𝑖 + 𝛽𝑗𝑘 + 𝜎𝑖𝑘 ≥ 𝑐𝑈𝐴𝑉

𝑖𝑗𝑘 (17)

𝑐𝐵𝑆𝑖𝑏𝑘 ⋅ 𝛼𝑖 + 𝛾𝑘 + 𝜎𝑖𝑘 ≥ 𝑐𝐵𝑆𝑖𝑏𝑘 (18)

𝑐𝑙𝑜𝑐𝑖𝑘 ⋅ 𝛼𝑖 + 𝜎𝑖𝑘 ≥ 𝑐𝑙𝑜𝑐𝑖𝑘 (19)

𝛼, 𝛽, 𝛾 ≥ 0 (20)

The basic idea of TAS is described as follows: GCs prefer to offload
their tasks to nearby UAVs, and UAVs process tasks from the GC with
a maximum residual transmission rate. Then, GCs that are not served
by UAVs choose to offload their tasks to the BS when the transmission
rate between GCs and the BS is larger than the computation rate of the
GC itself. Otherwise, GCs process the task locally.

In particular, each UAV 𝑗 serves the GC 𝑖 that has a maximum
residual transmission rate and delivers the total 𝑐𝑈𝐴𝑉

𝑖𝑗𝑘 data to the GC
𝑖 (line 5 to line 9). UAVs select the served GCs in the current slot 𝑘,
and the rest GCs offload tasks to the BS or directly complete them
(line 12 to line 23). The algorithm 𝑇𝐴𝑆 compares the task processing
amount in the local computing of the rest GCs with the transmission
rate between the BS and GCs. If the transmission rate is larger than the
local computing rate, GC 𝑖 offloads tasks to the BS (line 13 to line 17);
otherwise, GC 𝑖 directly computes the charges (line 18-line 22).

Finally, for each GC 𝑖 ∈ 𝐼 , when device 𝑗 (including UAVs, the
BS or GC itself) obtains 𝑐𝑖𝑗𝑘 task from GC 𝑖, 𝛼𝑖 will be updated as
𝛼𝑖 = 𝛼𝑖(1 +

∑

𝑗↔𝑖 𝑐𝑖𝑗𝑘
𝑐𝑖

) +
∑

𝑗↔𝑖 𝑐𝑖𝑗𝑘
(𝑑−1)𝑐𝑖

, where 𝑗 ↔ 𝑖 indicates UAV 𝑗 serves

C 𝑖 at current slot (line 26). Here 𝑑 is a value used in the calculation,
nd we define this value in Lemma 1.

In Algorithm 3, variable 𝛽𝑗𝑘, 𝛾𝑘, 𝜎𝑖𝑘 only updates at each time slot 𝑘,
ut variable 𝛼𝑖 probably updates in many different time slots. We note
hat dual variable 𝛼 representing completing ratio of task 𝑖 satisfies the
ondition of 𝛼𝑖 ≤ 1.

emma 2. To meet 𝛼𝑖 ≤ 1, value of 𝑑 should be set as 𝑑 = (1 + 1
𝑐𝑚𝑖𝑛

)𝑐𝑚𝑖𝑛 ,
here 𝑐𝑚𝑖𝑛 = 𝑚𝑖𝑛 𝑐𝑖.

roof. We define variable 𝛼𝑘𝑖 as the value of 𝛼𝑖 in slot 𝑘, written in
etail as:
𝑘 = 𝛼𝑘−1(1 +

∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘 ) +
∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘 (21)
𝑖 𝑖 𝑐𝑖 (𝑑−1)𝑐𝑖
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Algorithm 3: TAS (𝑈,𝑅,𝐾)

Input: Transmission rate of UAV 𝑐𝑈𝐴𝑉
𝑖𝑗𝑘

Transmission rate of BS 𝑐𝐵𝑆𝑖𝑗𝑘
Computation rate of GC 𝑐𝑙𝑜𝑐𝑖𝑘
Data amount for each GC 𝑐𝑖
Current slot 𝑘 ∈ 𝐾
Output: variable 𝑥, 𝑦, 𝑧,𝛼, 𝛽, 𝛾
Total throughput 𝑑𝑎𝑡𝑎

1 𝑐𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑖 𝑐𝑖
2 ℎ = (1 + 1

𝑐𝑚𝑖𝑛
)𝑐𝑚𝑖𝑛

3 𝑥 = 0, 𝑦 = 0, 𝑧 = 0, 𝛼 = 0, 𝛽 = 0, 𝛾 = 0
4 𝑠 = ∅
5 for 𝑗 ∈ 𝐽 do
6 𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈𝐼 (𝑐𝑈𝐴𝑉

𝑖∗𝑗𝑘 (1 − 𝛼𝑖∗ ))
7 if (𝑐𝑈𝐴𝑉

𝑖∗𝑗𝑘 (1 − 𝛼𝑖) > 0 and 𝑐𝑈𝐴𝑉
𝑖∗𝑗𝑘 > 𝑚𝑎𝑥(𝑐𝐵𝑆𝑖∗𝑏𝑘, 𝑐

𝑙𝑜𝑐
𝑖𝑘 )) then

8 𝑥𝑈𝐴𝑉
𝑖∗𝑗𝑘 = 1

9 𝛽𝑗𝑘 = (𝑐𝑈𝐴𝑉
𝑖∗𝑗𝑘 − 𝑐𝑙𝑜𝑐𝑖𝑘 )(1 − 𝛼𝑖∗ )

10 𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎 + 𝑐𝑈𝐴𝑉
𝑖∗𝑗𝑘

11 end
12 𝑆 = 𝑆 ∪ {𝑖∗}, 𝐼 ′ = 𝐼∕{𝑖∗}
13 end
14 for each 𝑖′ ∈ 𝐼 ′ do
15 if 𝑐𝐵𝑆𝑖′𝑏𝑘 > 𝑐𝑙𝑜𝑐𝑖𝑘 then
16 𝑦𝑖′𝑏𝑘 = 1
17 𝛾𝑘 = (𝑐𝐵𝑆𝑖∗𝑏𝑘 − 𝑐𝑙𝑜𝑐𝑖𝑘 )(1 − 𝛼𝑖∗ )
18 𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎 + 𝑐𝐵𝑆𝑖∗𝑏𝑘
19 else
20 𝑧𝑙𝑜𝑐𝑖′𝑘 = 1
21 𝜎𝑖′𝑘 = 𝑐𝑙𝑜𝑐𝑖′𝑘 (1 − 𝛼𝑖)
22 𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎 + 𝑐𝑙𝑜𝑐𝑖′𝑘
23 end
24 end
25 for each 𝑖 ∈ 𝐼 do
26 𝛼𝑖 = 𝛼𝑖(1 +

∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘
𝑐𝑖

) +
∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘
(𝑑−1)𝑐𝑖

27 if ∑ℎ↔𝑖
∑

𝑘 𝑐𝑖ℎ𝑘 > 𝑐𝑖 then

28 𝑥𝑖ℎ𝑘 = 𝑐𝑖−
∑

ℎ↔𝑖
∑𝐾−1

𝑘=1 𝑐𝑖ℎ𝑘
∑

𝑗↔𝑖 𝑐𝑖ℎ𝑘
29 end
30 end

We define 𝑐𝑚𝑖𝑛 = 𝑚𝑖𝑛 𝑐𝑖, and in Eq. (21), 𝛼𝑖 is set as a geometric
rogression with initial value of

∑

ℎ↔𝑖 𝑐𝑚𝑖𝑛
(𝑑−1)𝑐𝑖

and iterative ratio of 1 +
∑

ℎ↔𝑖 𝑐𝑚𝑖𝑛
𝑐𝑖

. Then, the general term formula of 𝛼𝑖 can be written as the
sum of geometric progression, which is:

𝛼𝑘𝑖 =
(
∑

ℎ↔𝑖 𝑐𝑖𝑗𝑘
𝑐𝑚𝑖𝑛

)
𝑐𝑚𝑖𝑛
1

𝑑−1 ≤ 1 (22)

For each GC 𝑖 ∈ 𝐼 in slot 𝑘, ∑𝑗↔𝑖 𝑐𝑖𝑗𝑘 = 1, value ℎ is calculated as:

𝑑 = (1 + 1
𝑐𝑚𝑖𝑛

)𝑐𝑚𝑖𝑛 ■ (23)

Theorem 1. Algorithm 3 is 𝑒
𝑒−1 -competitive.

Proof. The solution to the problem (P2) is defined as:

𝑃𝑠𝑜𝑙 = max𝐷𝑠𝑢𝑚 (24)

Moreover, the solution to the dual problem (D2) is denoted as:

𝐷𝑠𝑜𝑙 = min
𝛼,𝛽,𝛾

𝑚
∑

𝑐𝑖𝛼𝑖 +
𝑛
∑

𝑠
∑

𝛽𝑗𝑘 +
𝑠
∑

𝛾𝑘 +
𝐼
∑

𝑠
∑

𝜎𝑖𝑘 (25)
7

𝑖=1 𝑗=1 𝑘=1 𝑘=1 𝑖=1 𝑘=1
The optimal solution of Algorithm 3 is represented as 𝑜𝑝𝑡.
Based on weak duality theory in operational research [31], the max-

imum value of primal solution 𝑃𝑠𝑜𝑙 cannot exceed the optimal solution
𝑜𝑝𝑡 and minimum value of dual solution 𝐷𝑠𝑜𝑙 cannot be lower than
optimal solution 𝑜𝑝𝑡. Thus, the relationship between primal solution
𝑃𝑠𝑜𝑙, optimal solution 𝑜𝑝𝑡 and dual solution 𝐷𝑠𝑜𝑙 is written in Eq. (26).

𝑃𝑠𝑜𝑙 ≤ 𝑜𝑝𝑡 ≤ 𝐷𝑠𝑜𝑙 (26)

The approximate ratio 𝜔 is then written as:

𝜔 =
𝑜𝑝𝑡
𝑃𝑠𝑜𝑙

≤
𝐷𝑠𝑜𝑙
𝑃𝑠𝑜𝑙

= 𝛥𝐷
𝛥𝑃

(27)

where 𝛥𝐷 and 𝛥𝑃 are increment of 𝐷𝑠𝑜𝑙 and 𝑃𝑠𝑜𝑙 for GC 𝑖 between two
neighboring time slot 𝑘 − 1 and 𝑘 in Algorithm 3. We use ratio 𝛥𝐷

𝛥𝑃 to
illustrate the upper bound of competitive ratio 𝜔.

When GC 𝑖 selects device ℎ to process its tasks at slot 𝑘, variable
𝑖ℎ𝑘 is increased from 0 to 1. Based on Eq. (11), the value of 𝛥𝑃 is:

𝑃 =
∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘𝑥𝑖ℎ𝑘 =
∑

𝑗↔𝑖 𝑐𝑖ℎ𝑘 (28)

Meanwhile, based on Eq. (16) (object function of (D2)), we analyze
the growth of 𝛥𝐷 by each variable. Specifically, for each GC i, the
growth of ∑𝑚

𝑖=1 𝑐𝑖𝛼𝑖 from time slots 𝑘 − 1 to 𝑘 is:

𝑐𝑖 ⋅ 𝛥𝛼𝑖 = 𝑐𝑖 ⋅ (𝛼𝑘𝑖 − 𝛼(𝑘−1)𝑖 ) (29)

the growth of ∑𝑛
𝑗=1

∑𝑠
𝑘=1 𝛽𝑗𝑘 from time slots 𝑘 − 1 to 𝑘 is:

𝑛
𝑗=1[𝛥(

∑𝑠
𝑘=1 𝛽𝑗𝑘)] =

∑𝑛
𝑗=1 𝛽𝑗𝑘 (30)

he growth of ∑𝑠
𝑘=1 𝛾𝑘 from time slots 𝑘 − 1 to 𝑘 is:

(
∑𝑠

𝑘=1 𝛾𝑘) = 𝛾𝑘 (31)

he growth of ∑𝐼
𝑖=1

∑𝑠
𝑘=1 𝜎𝑖𝑘 from time slots 𝑘 − 1 to 𝑘 is:

(
∑𝑠

𝑘=1 𝜎𝑖𝑘) = 𝜎𝑖𝑘 (32)

Based on Eqs. (29) to (32), the value of 𝛥𝐷 is:

𝐷 =
𝑛
∑

𝑗=1
𝛽𝑗𝑘 + 𝛾𝑘 + 𝜎𝑖𝑘 + 𝑐𝑖 ⋅ (𝛼𝑘𝑖 − 𝛼(𝑘−1)𝑖 )

=
∑

𝑗↔𝑖
(𝑐𝑈𝐴𝑉
𝑖𝑗𝑘 − 𝑐𝑙𝑜𝑐𝑖𝑘 ) ⋅ (1 − 𝛼𝑘−1𝑖 )

+
∑

𝑏↔𝑖
(𝑐𝐵𝑆𝑖𝑏𝑘 − 𝑐𝑙𝑜𝑐𝑖𝑘 ) ⋅ (1 − 𝛼𝑘−1𝑖 )

+ 𝑐𝑙𝑜𝑐𝑖𝑘 (1 − 𝛼𝑘−1𝑖 )

+ 𝑐𝑖 ⋅ (𝛼𝑘−1𝑖 ⋅

∑

𝑗↔𝑖 𝑐𝑖𝑗𝑘
𝑐𝑖

+
∑

𝑗↔𝑖 𝑐𝑖𝑗𝑘
(𝑑 − 1)𝑐𝑖

)

In each slot 𝑘 ∈ 𝐾, GC 𝑖 only choose one device (including UAVs,
the BS, and GC 𝑖 itself) to complete its data according to line 5 to 23 in
Algorithm 3. To analyze the value of 𝛥𝐷, we separately calculate 𝛥𝐷
when GC 𝑖 offloads its task to UAVs, the BS, or computes the task by
itself.

Case 1: If GC 𝑖 offloads its tasks to UAVs, the equation will be
transferred as:

𝛥𝐷 =𝑐𝑖 ⋅ 𝛼𝑘𝑖 +
𝑛
∑

𝑗=1
𝛽𝑗𝑘

=
∑

𝑗↔𝑖
(𝑐𝑈𝐴𝑉
𝑖𝑗𝑘 − 𝑐𝑙𝑜𝑐𝑖𝑘 ) ⋅ (1 − 𝛼𝑘−1𝑖 )

+ 𝑐𝑖 ⋅ (𝛼𝑘−1𝑖 ⋅

∑

𝑗↔𝑖 𝑐𝑖𝑗𝑘
𝑐𝑖

+
∑

𝑗↔𝑖 𝑐𝑖𝑗𝑘
(𝑑 − 1)𝑐𝑖

)

≤
∑

𝑗↔𝑖
𝑐𝑈𝐴𝑉
𝑖𝑗𝑘 ⋅ (1 − 𝛼𝑘−1𝑖 )

+ 𝑐𝑖 ⋅ (𝛼𝑘−1𝑖 ⋅

∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘
𝑐𝑖

+
∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘
(𝑑 − 1)𝑐𝑖

)
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Since 𝑐𝑖ℎ𝑘 = 𝑐𝑈𝐴𝑉
𝑖𝑗𝑘 in this case, value of 𝛥𝐷 is written as:

𝐷 ≤
∑

ℎ↔𝑖
𝑐𝑖ℎ𝑘 ⋅ (1 − 𝛼𝑘−1𝑖 )

+ 𝑐𝑖 ⋅ (𝛼𝑘−1𝑖 ⋅

∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘
𝑐𝑖

+
∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘
(𝑑 − 1)𝑐𝑖

)

≤
∑

ℎ↔𝑖
𝑐𝑖ℎ𝑘(1 +

1
𝑑 − 1

)

Therefore, the competitive ratio of Case 1 is:

𝜔 =
𝑂𝑝𝑡
𝑃𝑠𝑜𝑙

≤
𝐷𝑠𝑜𝑙
𝑝𝑠𝑜𝑙

= 𝛥𝐷
𝛥𝑃

=
(1 + 1

𝑑+1 )
∑

𝑗↔𝑖 𝑐𝑖ℎ𝑘
∑

𝑗↔𝑖 𝑐𝑖ℎ𝑘

=1 + 1
𝑑 − 1

Case 2: If GC 𝑖 offloads its tasks to the BS, the equation will be
ransferred as:

𝐷 =𝑐𝑖 ⋅ 𝛼𝑘𝑖 + 𝛾𝑘
=
∑

𝑏↔𝑖
(𝑐𝐵𝑆𝑖𝑏𝑘 − 𝑐𝑙𝑜𝑐𝑖𝑘 ) ⋅ (1 − 𝛼𝑘−1𝑖 )

+ 𝑐𝑖 ⋅ (𝛼𝑘−1𝑖 ⋅

∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘
𝑐𝑖

+
∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘
(𝑑 − 1)𝑐𝑖

)

≤
∑

𝑏↔𝑖
𝑐𝐵𝑆𝑖𝑏𝑘 ⋅ (1 − 𝛼𝑘−1𝑖 )

+ 𝑐𝑖 ⋅ (𝛼𝑘−1𝑖 ⋅

∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘
𝑐𝑖

+
∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘
(𝑑 − 1)𝑐𝑖

)

Since 𝑐𝑖ℎ𝑘 = 𝑐𝐵𝑆𝑖𝑏𝑘 in this case, similar to Case 1, 𝛥𝐷 is written as

𝐷 ≤
∑

ℎ↔𝑖
𝑐𝑖ℎ𝑘 ⋅ (1 − 𝛼𝑘−1𝑖 )

+ 𝑐𝑖 ⋅ (𝛼𝑘−1𝑖 ⋅

∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘
𝑐𝑖

+
∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘
(𝑑 − 1)𝑐𝑖

)

≤
∑

ℎ↔𝑖
𝑐𝑖ℎ𝑘(1 +

1
𝑑 − 1

)

Therefore, the competitive ratio of Case 2 is

𝜔 =
𝑜𝑝𝑡
𝑃𝑠𝑜𝑙

≤
𝐷𝑠𝑜𝑙
𝑝𝑠𝑜𝑙

= 𝛥𝐷
𝛥𝑃

= 1 + 1
𝑑 − 1

Case 3: If GC 𝑖 computes the tasks in local, the equation will be
transferred as:

𝛥𝐷 =𝑐𝑖 ⋅ 𝛼𝑘𝑖 + 𝜎𝑖𝑘
=𝑐𝑙𝑜𝑐𝑖𝑘 (1 − 𝛼𝑘−1𝑖 )

+ 𝑐𝑖 ⋅ (𝛼𝑘−1𝑖 ⋅

∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘
𝑐𝑖

+
∑

ℎ↔𝑖 𝑐𝑖ℎ𝑘
(𝑑 − 1)𝑐𝑖

)

≤
∑

ℎ↔𝑖
𝑐𝑖ℎ𝑘(1 +

1
𝑑 − 1

)

Therefore, the competitive ratio of Case 3 is

𝜔 =
𝑜𝑝𝑡
𝑃𝑠𝑜𝑙

≤
𝐷𝑠𝑜𝑙
𝑝𝑠𝑜𝑙

= 𝛥𝐷
𝛥𝑃

= 1 + 1
𝑑 − 1

According to Lemma 2, 𝑑 = (1 + 1
𝑐𝑚𝑖𝑛

)𝑐𝑚𝑖𝑛 . Since
𝑙𝑖𝑚𝑐𝑚𝑖𝑛→∞(1 + 1

𝑐𝑚𝑖𝑛
)𝑐𝑚𝑖𝑛 = 𝑒, the value of competitive ratio 𝜔 is:

𝜔 =1 + 1
𝑒 − 1

= 𝑒
𝑒 − 1

■

Lemma 3. The algorithm 𝑇𝐴𝑆 can solve problem P2 in the 𝑂(𝑠2) step.

roof. In each iteration, algorithm TAS attempts to search all the time
lots 𝑘 ∈ 𝐾 and UAVs 𝑗 ∈ 𝐽 to find the most suitable UAV for GC 𝑖. The
8

ime complexity of this step is 𝑂(𝑠⋅𝑛). Then, the algorithm offloads GCs’
asks to the BS or calculates them locally, taking time 𝑂(𝑠 ⋅𝑚). Finally,
he algorithm updates the variable 𝛼, taking time 𝑂(𝑠 ⋅𝑚). Overall, the
ime complexity of algorithm TAS is 𝑂(𝑠⋅(𝑛+𝑚+𝑚)), namely 𝑂(𝑠2). ■

. Performance evaluation

In this section, we evaluate the performance of our algorithm MU-
AA by comparing the offline algorithm OPT, the online algorithm
ound-Robin, and the algorithm HOTSPOT.

.1. Simulation settings

Simulation settings are based on Ref. [18,32]. The total simulation
ime 𝑠 is set as 20 to 200 slots, where the length of a single slot 𝛥𝑡
s set as 100 ms. There are 1 to 20 UAVs in the experiment; each of
hem flies at a fixed altitude 𝐻 = 20 m with a maximum speed of
𝑚𝑎𝑥 = 40 m∕s, and keeps the safe distance 𝑑𝑖𝑠𝑚𝑖𝑛 = 15 m from other
AVs. A computational edge node is mounted on a UAV to process tasks
ffloaded from GCs, and UAVs are only allowed to serve GCs in their
ommunication ranges. GC 𝑖 contains 𝑐𝑖 amount of computation task,
hose value ranges from 10 MB to 30 MB, and has a local computation

ate 𝑐𝑙𝑜𝑐𝑖𝑘 ranging from 0.05 MB/s to 0.1 MB/s. It can offload tasks to
earby UAVs or the remote BS for computation and communication
ssistance. We define the maximum network bandwidth as 3 MHz, and
he transmit power of GC 𝑖 is set as 𝑝𝑖 = 0.5 W. Based on the above
efinitions, the transmission rate between the BS and each GC 𝑖 is set
s 𝑐𝑈𝐴𝑉

𝑖𝑏𝑘 , whose value can be calculated in advance.
GCs’ mobility model is referred to paper [33], where vehicles’ ve-

ocities are randomly generated using a truncated Gaussian distribution
ith a mean equal 70 km/h, variance 16 km/h, and velocities can be
aried between 50∼90 km/h, where the vehicles are driving in this
peed with one direction randomly generated at the first time slot. The
ehicle will turn around and return if it meets the scenario border.

Based on previous settings, we compare the proposed algorithm
UTAA with the offline optimal algorithm OPT, the online Round-
obin policy, a trajectory design algorithm named HOTSPOT [32], a
pecial case of MUTAA named SINGLE, details described as follows:

• OPT: OPT directly solves the offline version of the problem TD-
TAP by mathematic tools, in which UAVs know locations of all
GCs and transmission rates 𝑐𝐵𝑆𝑖𝑏𝑘 , 𝑐𝑈𝐴𝑉

𝑖𝑗𝑘 in advance.
• Round-Robin: In Round-Robin, UAV 𝑗 evenly distributes its com-

munication resource to all GCs within the communication range
of 𝑅𝑗 at each time slot. The competitive ratio of the Round-Robin
policy is proved to be 2 [22].

• HOTSPOT: HOTSPOT [32] utilizes maximum clique technology
to deploy UAVs in proper locations, and decides the GCs’ task
allocations according to the average offloading probability.

• SINGLE: A special case of MUTAA when the preschedule step
is set as 1. The algorithm SINGLE is proposed to evaluate the
performance of MUTAA via different preschedule steps.

On this basis, simulations are given in the following sections to eval-
ate the performance of task processing amount and average running
ime for a single time slot 𝛥𝑡 = 100 ms. For these settings, we generate
0 scenarios for each simulation and take the average number as the
inal results.

.2. Impact of GC numbers 𝑚

Several experiments discuss the relationship between task process-
ng amount and GC numbers in this part. In this scenario, 3 UAVs
ave a communication range of 𝑅𝑗 = 50 m, with a maximum speed of
0 m∕s and a safety distance of 5 m. There are 30 to 1000 GCs randomly
enerated in 300 m × 300 m area, with task amount of 𝑐 varying
𝑖
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Table 2
Task processing amount with various GC numbers 𝑚 (𝑠 = 100, 𝑛 = 3).

GC number Task processing amount (MB) Competitive ratio Average running time in 𝛥𝑡 (ms)

Round-Robin MUTAA OPT Round-Robin MUTAA Round-Robin MUTAA OPT

30 426.34 483.86 521.83 1.22 1.08 0.462 1.103 47.28
60 786.20 944.83 1312.38 1.67 1.39 0.913 1.843 128.23
90 966.31 1214.56 1735.86 1.79 1.43 1.663 3.707 322.12
120 1314.69 1416.28 1987.52 1.51 1.40 2.068 4.675 1203.41
150 1541.26 1867.76 2419.15 1.57 1.29 4.318 6.193 4703.41
200 1752.78 2342.34 2831.65 1.62 1.20 8.726 10.665 24 163.28
300 2659.82 3520.39 – – – 13.643 16.817 –
500 3391.35 4765.12 – – – 21.322 25.134 –
1000 5611.17 8868.26 – – – 32.673 47.374 –
Table 3
Task processing amount with various UAV numbers 𝑛 (𝑠 = 100, 𝑚 = 100).

UAV number Task processing amount (MB) Competitive ratio Average running time in 𝛥𝑡 (ms)

Round-Robin MUTAA OPT Round-Robin MUTAA Round-Robin MUTAA OPT

1 654.13 821.29 1276.27 1.95 1.56 0.612 0.791 39.26
2 966.23 1138.51 1673.29 1.73 1.47 1.391 1.329 57.35
3 1124.39 1451.23 1878.12 1.67 1.29 2.722 4.069 180.810
4 1289.32 1653.31 2041.75 1.58 1.23 3.606 5.7928 431.843
5 1396.32 1795.34 2141.54 1.53 1.19 5.3667 7.8041 1203.41
8 1479.91 1923.36 2217.95 1.49 1.15 8.095 11.761 6163.28
10 1657.67 2020.70 – – – 12.544 16.9073 –
15 1734.23 2176.98 – – – 21.256 32.918 –
20 1761.27 2208.87 – – – 30.954 56.074 –
f
t
v
w
e
O
T

R
b
i
U
i
e

Fig. 2. Task processing amount versus GCs’ number.

rom 15 MB to 30 MB. The BS is set in the center of the scenario, and
he preschedule step for MUTAA is set as 5. We experiment to eval-
ate the task processing amount of MUTAA, OPT, and Round-Robin,
espectively. Experimental results are shown in Fig. 2 and Table 2.

It can be seen from Fig. 2 that the three algorithms Round-Robin,
UTAA, and OPT complete more tasks when the number of GCs

ncreases because the more GCs are, the more tasks are produced.
UTAA completes more tasks than Round-Robin, which does not take

ransmission rate 𝑐𝑈𝐴𝑉
𝑖𝑗𝑘 and residual task amount into consideration.

PT performs better than MUTAA since OPT knows the transmission
ate and locations of all GCs, UAVs, and the BS in advance. Results
lso show that when the GCs number reaches 200, MUTAA completes
3% tasks on average of OPT, and the competitive ratio between
UTAA and OPT is less than 1.58, while the competitive ratio between
ound-Robin and OPT is less than 2.

However, OPT spends much more time achieving the final results.
n Table 2, it can be seen that when the number of GCs grows, the
xecution time of OPT increases exponentially. When the number of
Cs reaches 200, OPT spends 42.16 s on average to achieve the results
t each time slot (𝛥𝑡 = 100 ms), which is too long and cannot be applied
nline. By contrast, the running time of MUTAA only costs 10.67 ms at
ach time slot.
9

m

Fig. 3. Task processing amount versus UAVs’ number.

5.3. Impact of UAV numbers 𝑛

This section provides a group of experiments to show the relation-
ship between task processing amount and UAV numbers. Specifically,
100 GCs generated in 300×300 m areas, with task amount of 𝑐𝑖 varying
rom 15 MB to 30 MB. The BS is set in the center of the scenario, and
he preschedule step for the algorithm MUTAA is set as 5. UAV numbers
ary from 1 to 20, each of which has a communication range 𝑅𝑗 = 50 m,
ith a maximum speed of 40 m∕s and a safety distance of 5 m. We
xperiment to evaluate the total task amount of the algorithm MUTAA,
PT, and Round-Robin. Experimental results are shown in Fig. 3 and
able 3.

It can be seen from Fig. 3 and Table 3 that the three algorithms
ound-Robin, MUTAA, and OPT, complete more tasks when the num-
er of UAVs increases. However, with the number of UAVs growing, the
ncrement of task competition amount decreases. For instance, when
AV numbers increase from 15 to 20, the task processing amount

ncreases to only 31.2MB. That is because the number of GCs in this
xperiment is fixed, and the total amount of tasks does not change
uch. Therefore, the competitive ratios of both Round-Robin and
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Table 4
Task processing amount with various total simulation time slots 𝑠 (𝑐𝑖 = 9MB, 𝑚 = 100).

Slot number Task processing amount (MB) Competitive ratio Average running time in 𝛥𝑡 (ms)

Round-Robin MUTAA OPT Round-Robin MUTAA Round-Robin MUTAA OPT

40 532.51 632.20 837.31 1.57 1.34 0.3870 0.5414 38.314
80 642.13 717.18 900.00 1.40 1.25 0.2743 0.5925 168.241
120 708.75 762.56 900.00 1.27 1.18 0.1376 0.6695 283.41
160 724.29 790.46 900.00 1.24 1.13 0.1379 0.9038 1975.56
200 745.69 810.92 900.00 1.21 1.11 0.1488 1.5894 3534.17
Table 5
Task processing amount with various total simulation time slots 𝐾 (𝑐𝑖 = 20MB, 𝑚 = 100).

Slot number Task processing amount (MB) Competitive ratio Average running time in 𝛥𝑡 (ms)

Round-Robin MUTAA OPT Round-Robin MUTAA Round-Robin MUTAA OPT

40 781.93 880.53 1259.74 1.61 1.43 0.4638 0.5417 4.9727
80 930.74 1033.57 1492.35 1.64 1.44 0.1462 0.9391 12.7359
120 1097.86 1256.46 1857.34 1.69 1.48 0.5522 1.8698 56.0810
160 1320.09 1408.35 2000.00 1.52 1.42 0.7306 2.7928 103.1843
200 1352.27 1535.41 2000.00 1.47 1.30 1.3667 4.8041 510.3417
Fig. 4. Task processing amount versus simulation time.
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MUTAA decrease when UAV numbers increase because more UAVs are
dispatched to assist GCs in completing their tasks.

Simulation results also show that the running time of three algo-
rithms increases when the UAV number grows, for all these algorithms
iterates each UAV 𝑗 ∈ 𝐽 to calculate the task processing amount. When
comparing the three algorithms, OPT’s running time is much longer
than that of MUTAA and Round-Robin, reaching 6.613 s, which is much
larger than the given time slot of 100 ms and cannot be applied in online
development. On the contrary, the running time of MUTAA only costs
11.76 ms at each time slot.

5.4. Impact of total simulation slots 𝑠

In this section, we provide a group of experiments to illustrate the
elationship between task processing amount and total simulation time
lots 𝑠. We conduct two experiments to illustrate situations where each
C’s task amount differs. Specifically, there are 100 GCs randomly
enerated in the 300 × 300 m area, with the task amount of 𝑐𝑖 = 9 MB
n the first experiment and 𝑐𝑖 = 20 MB in the second experiment. The
S is set in the center of the area, and the preschedule step for the
lgorithm MUTAA is set as 5. There are 5 UAVs in this scenario, and
ach has a communication range of 𝑅𝑗 = 50 m, with a maximum speed
f 40 m∕s and a safety distance of 5 m. We conduct the two experiments
o change the simulation time from 10 to 140 slots and evaluate the
ask processing amount of the algorithm MUTAA, the algorithm OPT,
nd the algorithm Round-Robin respectively. Experimental results are
hown in Table 4, Fig. 4(a), Table 5, and Fig. 4(b).

Table 4 shows how the algorithm MUTAA works when the task
mount of each GC is 9 MB. When the number of time slots varies from
0 to 200, the competitive ratio between MUTAA and OPT is less than
.58, verifying that the algorithm MUTAA is 1.58-competitive. When
10

H

e compare different simulation times, it can be seen that MUTAA
erforms better when the simulation time is longer, for OPT completes
ll tasks when the slot number is 80, and the competitive ratio between
UTAA and OPT is better when the number of slots increases.

Table 5 shows how MUTAA works when the task amount of each
C is 20 MB. When the number of time slots varies from 40 to 200,

he competitive ratio between MUTAA and OPT is less than 1.58,
emonstrating that the algorithm MUTAA is 1.58-competitive. When
e compare different time slots, it can be seen that the competitive

atio of MUTAA first increases when the slot number is smaller than
20 because the accumulation gap between MUTAA and OPT is larger
hen the number of time slots increases. When the slot number is larger

han 120, the competitive ratio of MUTAA decreases. That is because
PT already completes all tasks generated by GCs, while MUTAA still
as more tasks to complete.

.5. Impact of different trajectories

The three sections above evaluate task-allocation algorithms be-
ween MUTAA and the compared algorithms. In this section, we com-
are the three trajectory-design algorithms between MUTAA and
OTSPOT [32] and SINGLE.

Specifically, 100 GCs randomly generated in the 300 × 300 m area,
ith the task amount 𝑐𝑖 varying from 15 MB to 30 MB. There are 3

UAVs in the scenario, each with a communication range 𝑅𝑗 = 50 m, a
aximum speed of 40 m/s, and a safety distance of 5 m. The step for

he algorithm MUTAA is set as 5, and that for SINGLE is set as 1. We
onduct an experiment to evaluate task process amount of MUTAA and
OTSPOT in 150 time slots. Experimental results are shown in Table 6.

We first compare the task processing amount between MUTAA and
OTSPOT. It can be seen from Table 6 that the task processing amount
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Fig. 5. UAV’s trajectory among MUTAA and SINGLE. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 6
Experimental results for different trajectory algorithms with various GCs’ numbers (𝑠 = 100, 𝑛 = 3).

GCs’ number Task processing amount (MB) Total flight distance (m)

HOTSPOT MUTAA SINGLE HOTSPOT MUTAA SINGLE

20 398.29 500.51 413.82 551.21 704.71 751.62
40 728.01 920.39 870.68 761.47 990.00 976.37
60 960.59 1115.84 1022.67 826.97 1079.98 1127.77
90 1071.80 1391.21 1236.35 1086.51 1246.85 1390.46
100 1212.59 1579.46 1404.32 1200.37 1460.47 1546.77
t
s
m

of MUTAA and SINGLE is larger than that of HOTSPOT, for the task-
allocation algorithm in HOTSPOT only considers the average offloading
probability of GCs, and does not take the residual task amount for each
GC into consideration. Task processing amount of SINGLE is smaller
than that of MUTAA, and the gap between the two algorithms is smaller
than 10%, for these two algorithms are similar that they both use
preschedule strategy to deploy UAVs in proper locations. However, the
total flight distance of SINGLE is much larger than that of MUTAA
because UAVs use the trajectory algorithm SINGLE sometimes roaming
around two specific GCs, which prolongs the total flight distance of
UAVs.

Fig. 5(a) and (b) illustrate the trajectories of MUTAA, SINGLE, and
the task scheduling for each GC in scenario with 100 GCs, 2 UAVs and a
BS. The green and brown lines in Fig. 5 are trajectories for two different
UAVs. The red circle represents the BS, which located at the scenario’s
center. The red star denotes the GCs that UAVs serve, the blue triangle
means the GCs that are served by the BS, where the pink diamond is
the GC that computes the task locally. It can be seen from Fig. 5(a)
that UAV attempts to select GCs with maximum transmission rate and
most residual tasks, which is always the GC near each UAV. Besides,
Most GCs near the BS choose to upload their tasks to the BS, for the
transmission rate between GCs and the BS is large. When GCs are far
from the BS, uploading tasks to BS may take much time, and some GCs
choose to compute tasks by themselves.

Then, we compare the total flight distance between HOTSPOT with
MUTAA. In Table 6, the total flight distance of the proposed algorithm
MUTAA is smaller than that of HOTSPOT since MUTAA utilizes a
preschedule strategy to find the most suitable deployment positions
for UAVs, according to candidate locations of GCs in the current time
slot and locations of UAVs in previous time slots. On the contrary,
HOTSPOT utilizes the maximum clique technology to classify GCs into
several clusters and deploys UAVs in the center of each cluster. When
GCs’ locations changes, the center of each cluster (UAV’s location) does
not change much, leading to the result that UAVs only receive tasks
from GCs within a limited range. Therefore, the task processing amount
of HOTSPOT is much smaller than that of MUTAA.
11
6. Conclusion

In this paper, we establish a UAV-aided edge computing system
to assist GCs in completing their computing tasks. Distinct from most
of the existing works, this paper considers an online scenario where
UAVs do not obtain information in advance from GCs, e.g., locations
and communication quality. In particular, we formulate a trajectory
design and task allocation problem named TDTAP in the mathematic
model to maximize the task processing amount of all GCs, under
trajectory constraints of UAVs and task amount constraints of GCs. On
this basis, an online algorithm MUTAA is proposed to solve the problem
TDTAP and is decomposed into two sub-algorithms: trajectory design
algorithm TDA and task scheduling algorithm TAS. On the one hand, a
trajectory design algorithm named TDA utilizes a preschedule strategy
to optimize each UAV’s trajectory. On the other hand, a competitive
online algorithm named TAS is proposed to schedule tasks for each
GC. Theoretical analysis proves that TAS is e/(e–1)-competitive. The
experimental results demonstrate that MUTAA completes an average
83% task amount of the optimal offline algorithm OPT but costs much
less time.

In the future, a more complex UAV-aided edge computing system
will be built to consider cooperation strategies among UAVs. We aim to
maximize the task processing amount of all GSs by jointly considering
UAVs’ trajectory and task allocation strategies under the trajectory
design constraints, tasks’ deadline constraints, and energy consumption
constraints.

CRediT authorship contribution statement

Weidu Ye: Investigation, Theoretical analysis, Experiment evalua-
ion, Writing. Junzhou Luo: Funding acquisition, Resources, Supervi-
ion, Writing – review & editing. Wenjia Wu: Investigation, Experi-
ent evaluation, Writing, Validation. Feng Shan: Theoretical analysis,
Writing, Validation. Ming Yang: Resources, Supervision.



Computer Networks 218 (2022) 109405W. Ye et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Appendix A. Transformation procedure between the primal prob-
lem and the dual problem

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.comnet.2022.109405.

References

[1] X. Hu, K.-K. Wong, K. Yang, Z. Zheng, UAV-assisted relaying and edge computing:
scheduling and trajectory optimization, IEEE Trans. Wireless Commun. 18 (10)
(2019) 4738–4752.

[2] Y. Liu, K. Xiong, Q. Ni, P. Fan, K.B. Letaief, UAV-assisted wireless powered
cooperative mobile edge computing: Joint offloading, CPU control, and trajectory
optimization, IEEE Internet Things J. 7 (4) (2020) 2777–2790.

[3] Y. Zeng, Q. Wu, R. Zhang, Accessing from the sky: A tutorial on UAV
communications for 5G and beyond, Proc. IEEE 107 (12) (2019) 2327–2375.

[4] Y. Zeng, J. Xu, R. Zhang, Energy minimization for wireless communication with
rotary-wing UAV, IEEE Trans. Wireless Commun. 18 (4) (2019) 2329–2345.

[5] Z. Yong, Z. Rui, Energy-efficient UAV communication with trajectory
optimization, IEEE Trans. Wireless Commun. 16 (6) (2017) 3747–3760.

[6] C. Zhan, Y. Zeng, Aerial-ground cost tradeoff for multi-UAV-enabled data
collection in wireless sensor networks, IEEE Trans. Commun. 68 (3) (2020)
1937–1950.

[7] H. Guo, J. Liu, UAV-enhanced intelligent offloading for internet of things at the
edge, IEEE Trans. Ind. Inf. 16 (4) (2020) 2737–2746.

[8] J. Zhang, L. Zhou, Q. Tang, E.C. Ngai, X. Hu, H. Zhao, J. Wei, Stochastic
computation offloading and trajectory scheduling for UAV-assisted mobile edge
computing, IEEE Internet Things J. 6 (2) (2019) 3688–3699.

[9] M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Mobile unmanned aerial vehicles
(UAVs) for energy-efficient internet of things communications, IEEE Trans.
Wireless Commun. 16 (11) (2017) 7574–7589.

[10] Y. Zeng, J. Xu, R. Zhang, Energy minimization for wireless communication with
rotary-wing UAV, IEEE Trans. Wireless Commun. 18 (4) (2019) 2329–2345.

[11] Y. Wang, Z. Hu, X. Wen, Z. Lu, J. Miao, Minimizing data collection time
with collaborative UAVs in wireless sensor networks, IEEE Access 8 (2020)
98659–98669.

[12] J. Gong, T. Chang, C. Shen, X. Chen, Flight time minimization of UAV for data
collection over wireless sensor networks, IEEE J. Sel. Areas Commun. 36 (9)
(2018) 1942–1954.

[13] Z. Yu, Y. Gong, S. Gong, Y. Guo, Joint task offloading and resource allocation
in UAV-enabled mobile edge computing, IEEE Internet Things J. 7 (4) (2020)
3147–3159.

[14] S. Eom, H. Lee, J. Park, I. Lee, UAV-aided wireless communication design
with propulsion energy constraint, in: 2018 IEEE International Conference on
Communications (ICC), 2018, pp. 1–6.

[15] Y. Liang, W. Xu, W. Liang, J. Peng, X. Jia, Y. Zhou, L. Duan, Nonredundant
information collection in rescue applications via an energy-constrained UAV,
IEEE Internet Things J. 6 (2) (2019) 2945–2958.

[16] M. Alzenad, A. El-Keyi, F. Lagum, H. Yanikomeroglu, 3D placement of an
unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal
coverage, IEEE Wirel. Commun. Lett. 6 (4) (2017) 434–437.

[17] D. Franklin, NVIDIA jetson TX2 delivers twice the intelligence to the
edge, 2017, [Online]. Available: https://developer.nvidia.com/blog/jetson-tx2-
delivers-twice-intelligenceedge/.

[18] Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, G.Y. Li, Joint offloading and trajectory
design for UAV-enabled mobile edge computing systems, IEEE Internet Things J.
PP (99) 1.

[19] F. Zhou, Y. Wu, R.Q. Hu, Y. Qian, Computation rate maximization in UAV-
enabled wireless-powered mobile-edge computing systems, IEEE J. Sel. Areas
Commun. 36 (9) (2018) 1927–1941.

[20] X. Cao, J. Xu, R. Zhang, Mobile edge computing for cellular-connected UAV:
Computation offloading and trajectory optimization, in: 2018 IEEE 19th Inter-
national Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), 2018, pp. 1–5.
12
[21] S. Jeong, O. Simeone, J. Kang, Mobile edge computing via a UAV-mounted
cloudlet: Optimization of bit allocation and path planning, IEEE Trans. Veh.
Technol. 67 (3) (2018) 2049–2063.

[22] H. Deng, I. Hou, On the capacity-performance trade-off of online policy
in delayed mobile offloading, IEEE Trans. Wireless Commun. 16 (1) (2017)
526–537.

[23] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, B. Li, Dedas: Online task dispatching
and scheduling with bandwidth constraint in edge computing, in: IEEE INFOCOM
2019 - IEEE Conference on Computer Communications, 2019, pp. 2287–2295.

[24] H. Tan, Z. Han, X.-Y. Li, F.C. Lau, Online job dispatching and scheduling
in edge-clouds, in: IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications, 2017, pp. 1–9.

[25] X. Song, G. Fan, Selecting salient frames for spatiotemporal video modeling and
segmentation, IEEE Trans. Image Process. 16 (12) (2007) 3035–3046.

[26] W. Liu, G. Lin, T. Zhang, Z. Liu, Guided co-segmentation network for fast video
object segmentation, IEEE Trans. Circuits Syst. Video Technol. 31 (4) (2021)
1607–1617.

[27] G. Quellec, M. Lamard, B. Cochener, G. Cazuguel, Real-time segmentation and
recognition of surgical tasks in cataract surgery videos, IEEE Trans. Med. Imaging
33 (12) (2014) 2352–2360.

[28] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, X. Shen, Energy-efficient UAV-assisted
mobile edge computing: Resource allocation and trajectory optimization, IEEE
Trans. Veh. Technol. 69 (3) (2020) 3424–3438.

[29] Y. Liu, K. Xiong, Q. Ni, P. Fan, K.B. Letaief, UAV-assisted wireless powered
cooperative mobile edge computing: Joint offloading, CPU control, and trajectory
optimization, IEEE Internet Things J. 7 (4) (2020) 2777–2790.

[30] T. Zhang, Y. Xu, J. Loo, D. Yang, L. Xiao, Joint computation and communication
design for UAV-assisted mobile edge computing in IoT, IEEE Trans. Ind. Inf. 16
(8) (2020) 5505–5516.

[31] N. Buchbinder, J.S. Naor, The design of competitive online algorithms via a
primal-dual approach, Found. Trends Theor. Comput. Sci. 3 (2) (2009) 93–263.

[32] Z. Liao, Y. Ma, J. Huang, J. Wang, J. Wang, HOTSPOT: A UAV-assisted dynamic
mobility-aware offloading for mobile edge computing in 3D space, IEEE Internet
Things J. (2021).

[33] M. Samir, D. Ebrahimi, C. Assi, S. Sharafeddine, A. Ghrayeb, Leveraging UAVs
for coverage in cell-free vehicular networks: A deep reinforcement learning
approach, IEEE Trans. Mob. Comput. 20 (9) (2021) 2835–2847.

Weidu Ye received the Bachelor’s degree in Computer
Science from Nanjing Forestry University in 2015. He is
currently working towards the Ph.D. degree in the School
of Computer Science and Engineering in Southeast Univer-
sity, Nanjing, China. His research interests include edge
computing and UAV communications.

Junzhou Luo received the BS degree in applied mathemat-
ics and the MS and Ph.D. degrees in computer network,
all from Southeast University, China, in 1982, 1992, and
2000, respectively. He is a full professor in the School of
Computer Science and Engineering, Southeast University. He
is a member of the IEEE Computer Society and co-chair
of IEEE SMC Technical Committee on Computer Supported
Cooperative Work in Design, and he is a member of the ACM
and chair of ACM SIGCOMM China. His research interests
are next generation network architecture, network security,
cloud computing, and wireless LAN.

Wenjia Wu received the B.S. and Ph.D. degrees in computer
science in 2006 and 2013, respectively, from Southeast
University. He is an associate professor at the School of
Computer Science and Engineering in Southeast University.
His research interests include wireless and mobile networks.

https://doi.org/10.1016/j.comnet.2022.109405
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb1
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb1
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb1
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb1
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb1
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb2
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb2
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb2
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb2
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb2
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb3
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb3
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb3
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb4
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb4
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb4
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb5
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb5
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb5
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb6
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb6
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb6
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb6
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb6
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb7
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb7
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb7
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb8
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb8
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb8
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb8
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb8
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb9
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb9
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb9
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb9
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb9
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb10
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb10
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb10
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb11
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb11
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb11
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb11
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb11
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb12
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb12
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb12
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb12
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb12
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb13
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb13
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb13
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb13
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb13
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb14
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb14
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb14
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb14
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb14
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb15
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb15
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb15
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb15
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb15
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb16
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb16
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb16
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb16
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb16
https://developer.nvidia.com/blog/jetson-tx2-delivers-twice-intelligenceedge/
https://developer.nvidia.com/blog/jetson-tx2-delivers-twice-intelligenceedge/
https://developer.nvidia.com/blog/jetson-tx2-delivers-twice-intelligenceedge/
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb18
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb18
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb18
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb18
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb18
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb19
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb19
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb19
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb19
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb19
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb20
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb20
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb20
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb20
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb20
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb20
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb20
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb21
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb21
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb21
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb21
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb21
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb22
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb22
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb22
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb22
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb22
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb23
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb23
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb23
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb23
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb23
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb24
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb24
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb24
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb24
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb24
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb25
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb25
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb25
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb26
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb26
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb26
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb26
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb26
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb27
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb27
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb27
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb27
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb27
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb28
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb28
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb28
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb28
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb28
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb29
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb29
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb29
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb29
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb29
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb30
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb30
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb30
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb30
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb30
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb31
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb31
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb31
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb32
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb32
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb32
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb32
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb32
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb33
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb33
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb33
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb33
http://refhub.elsevier.com/S1389-1286(22)00439-X/sb33


Computer Networks 218 (2022) 109405W. Ye et al.
Feng Shan received the Ph.D. degree in computer science
from Southeast University, Nanjing, China, in 2015. He is
currently an associate professor with the School of Computer
Science and Engineering, Southeast University. He was a
Visiting Scholar with the School of Computing and Engi-
neering, University of Missouri–Kansas City, Kansas City,
MO, USA, from 2010 to 2012. His current research interests
include energy harvesting, wireless power transfer, swarm
intelligence, and algorithm design and analysis.
13
Ming Yang was born in 1979. He received a Ph.D. degree
in computer science from Southeast University, Nanjing, in
2007. Currently, he is a full professor at the School of
Computer Science and Engineering in Southeast University,
Nanjing, China. His research interests include network secu-
rity and privacy. He is a member of CCF and ACM, as well
as deputy director of Key Laboratory of Computer Network
and Information Integration, Ministry of Education.


	MUTAA: An online trajectory optimization and task scheduling for UAV-aided edge computing
	Introduction
	Related works
	UAV-aided edge computing
	Task dispatching and scheduling strategy
	Task dispatching and scheduling strategy in UAV-aided edge computing network

	System model and problem formulation
	System model
	Offloading to UAV
	Offloading to BS
	Local computing

	Problem formulation

	Online algorithms to solve TDTAP
	Online algorithm MUTAA
	Trajectory design algorithm
	Task allocation strategy

	Performance evaluation
	Simulation settings
	Impact of GC numbers m
	Impact of UAV numbers n
	Impact of total simulation slots s
	 Impact of different trajectories

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A. Transformation procedure between the primal problem and the dual problem
	References


