
Computer Networks 251 (2024) 110612

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Leveraging lightweight blockchain for secure collaborative computing in
UAV Ad-Hoc Networks
Runqun Xiong a,∗, Qing Xiao a, Zhoujie Wang b, Zhuqing Xu a, Feng Shan a

a School of Computer Science and Engineering, Southeast University, Nanjing, 211189, PR China
b Tencent Technology (Shanghai) Co.Ltd., Shanghai, PR China

A R T I C L E I N F O

Keywords:
UAV Ad-Hoc Network
Blockchain
Collaborative computing
Consensus
Smart contract

A B S T R A C T

Unmanned Aerial Vehicle (UAV) Ad-Hoc Networks (UANET) enable collaborative work among UAVs for
versatile task execution, but they face security challenges due to physical vulnerabilities, software issues,
and dynamic wireless networks. This paper proposes a secure collaborative computing framework based on
blockchain technology. Specifically, we first design a lightweight blockchain scheme suitable for UANET and
present an improved Practical Byzantine Fault Tolerance (PBFT) consensus algorithm based on trust evaluation,
aiming to reduce consensus overhead and establish trust relationships among UAVs. Furthermore, we devise a
smart contract-based UAV task allocation strategy that considers both task execution efficiency and offloading
security. This strategy enables UAVs to make optimal task-offloading decisions and facilitates collaborative
computing according to smart contract rules. Simulation results demonstrate that our proposed consensus
algorithm reduces average consensus latency by 47% and message count by 76% compared to PBFT-based
algorithms. Additionally, the task allocation strategy decreases task costs by 48% compared to local computing
strategies, achieving efficient and secure collaboration among UAVs in UANET. The real-world experiments
with a UAV swarm further validate the efficiency and security of our framework, confirming its practical
applicability in UANET.
1. Introduction

Recently, unmanned aerial vehicles (UAVs) have been widely
adopted for applications like infrastructure inspection and search-
and-rescue [1–3] due to their small size, versatility, flexibility, and
low operating costs. However, their limited onboard capabilities pose
challenges for compute-intensive tasks. To address this, multiple UAVs
can establish temporary aerial networks called UAV Ad-Hoc Networks
(UANETs) [4] to collaborate and execute assigned tasks autonomously.
UANETs also facilitate data collection, sharing and processing, espe-
cially in remote, complex terrains with disrupted infrastructure where
networks are unavailable. For instance, consider a disaster response
scenario where a fleet of 100 UAVs is deployed by multiple organi-
zations to perform tasks such as real-time mapping, search and rescue
operations, and environmental monitoring. These UAVs have varying
computational capacities due to differences in onboard hardware. The
need for timely processing of large amounts of data, such as high-
resolution imagery, necessitates offloading computationally expensive
tasks to UAVs with available idle capacity. Task offloading in this
scenario is necessitated by the limited onboard computing capabilities
of individual UAVs in the UANET. Given constrained resources and

∗ Corresponding author.
E-mail address: rxiong@seu.edu.cn (R. Xiong).

power-intensive nature of flight, UAVs often lack the computational
power to efficiently execute complex tasks such as real-time data
processing, image recognition, or computational simulations, which
are essential for a wide range of applications including infrastructure
inspection, search-and-rescue operations, and so on.

Additionally, with increasing UANET adoption for performing com-
missions, data integrity and communication security among collabo-
rating UAVs are critical concerns [5]. For example, a UANET used to
track drug traffickers near borders may face wiretaps and attacks due to
open links and dynamic topologies blanketing mission-critical areas. In
practice, given the vulnerability of flying UAVs and limited onboard
batteries, single UAV continuous operation time is constrained [6].
To enable long-term operation in target areas, UANETs must recycle
low-battery nodes and add new nodes, requiring urgent capabilities
for authenticating and tolerating UAV replacement [7]. This makes
UANETs vulnerable to control signal spoofing attacks that transmit false
signals or even seize control via successful cyber-attacks, posing safety
threats [8]. Additionally, lacking fixed infrastructure, many multi-UAV
systems rely on central nodes or edge servers to store and process data,
risking single points of failure [9]. UAVs may also fail communicating
vailable online 25 June 2024
389-1286/© 2024 Elsevier B.V. All rights are reserved, including those for text and

https://doi.org/10.1016/j.comnet.2024.110612
Received 12 December 2023; Received in revised form 21 June 2024; Accepted 21
data mining, AI training, and similar technologies.

June 2024

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:rxiong@seu.edu.cn
https://doi.org/10.1016/j.comnet.2024.110612
https://doi.org/10.1016/j.comnet.2024.110612

Computer Networks 251 (2024) 110612R. Xiong et al.
with control centers in real time when links are unavailable, especially
during emergencies. Thus, enhancing UANET security is essential for
such scenarios.

To prevent privacy leakage and ensure data integrity in UANETs,
blockchain as a decentralized solution is expected to securely and
adaptively maintain credible collaborative computing among dynamic
UAV nodes [5]. UAV wireless broadcasts match blockchain principles.
When a UAV produces and broadcasts blocks/transactions, neigh-
boring nodes can quickly receive and verify messages, more effi-
cient than wired blockchain networks with centralized gateways and
bottlenecks. However, directly deploying traditional blockchains on
resource-constrained UANETs is challenging due to power-intensity,
low throughput, and centralization trends. For instance, each UAV
would store ever-growing blocks, incurring major storage overhead.
Acquiring unique hashes per block via common Proof-of-Work (PoW)
consensus requires substantial computing resources [10]. Delegated-
Proof-of-Stake (DPoS) increases efficiency by reducing consensus nodes
but sacrifices decentralization [11]. Practical Byzantine Fault Tolerance
(PBFT) ensures correct consensus given less than one-third malicious
nodes [12] but performs optimally only in small fixed-size networks,
which may not satisfy demands of large-scale dynamic UANETs. Thus,
customized decentralized solutions are needed for resource-constrained
UANETs.

To address the aforementioned challenges, we propose 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶,
a secure collaborative computing framework for resource-constrained
UANETs. Unlike existing approaches, 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 incorporates a
lightweight blockchain scheme tailored for UANET environments,
which tackles issues related to power-intensity, low throughput, and
centralization trends inherent to traditional blockchain solutions. The
lightweight nature of our blockchain is achieved through reduced
computational and storage requirements, which is crucial for resource-
constrained UAVs. By optimizing consensus algorithms and minimizing
the need for extensive data storage, our approach ensures efficient
and secure operations within UANET environments. Furthermore, we
propose an improved trust-enhanced PBFT consensus algorithm that
not only reduces consensus overhead but also establishes dynamic trust
relationships among UAVs, which is critical in highly mobile and dy-
namic UANETs. Additionally, the smart contract-based task allocation
strategy introduced in this work is distinct in its consideration of both
task execution efficiency and offloading security, enabling UAVs to
make optimal decisions based on smart contract rules, a feature that
is not available in existing literature. We highlight the following key
contributions:

• We propose a secure collaborative computing framework named
𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 for resource-constrained UANET based on a lightweight
blockchain scheme.

• We design an improved trust-enhanced PBFT consensus mech-
anism to build a lightweight blockchain solution tailored for
UANET.

• We develop a smart contract-based UANET task allocation strat-
egy to enhance the efficiency of collaborative computing for
𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 and ensure system security in the face of risks.

• We validate the performance of 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 through simulations
and real-time experiments, revealing its ability to detect mali-
cious nodes in UANET and enhance the security of collaborative
computing in UANET while enabling efficient task execution.

2. Related work

Lately, many studies have explored integrating blockchain technol-
ogy with Vehicular Ad-hoc Network (VANET) and UANET applications.
Guo et al. [13] proposed an attribute-based data sharing scheme using
blockchain for 6G-enabled VANETs to enhance data security and shar-
ing efficiency. Xie et al. [14] introduced AirCon, an over-the-air consen-
2

sus mechanism for wireless blockchain networks, which significantly
reduces communication overhead and latency. Chen et al. [15] devel-
oped a vehicular trust blockchain framework with scalable Byzantine
consensus, addressing scalability and trust management in vehicular
networks. Su et al. [16] devised a lightweight vehicular blockchain
framework for UAV-assisted IoV. They utilized a credit-based consensus
algorithm to improve efficiency and security. Abegaz et al. [17] pro-
posed a framework combining multi-agent deep reinforcement learn-
ing, blockchain, and game theory to manage resource trading in multi-
UAV networks. Xu et al. [18] introduced blockchain for UAV-assisted
IoT data collection and incentivized UAVs with charging tokens. How-
ever, they focused on UAVs’ supportive role without considering UAV
swarm cooperation security [19–22]. Ge et al. [23] proposed a dis-
tributed UAV blockchain scheme to address security threats while mini-
mizing overhead. Gupta et al. [24] presented a blockchain-based secure
UAV communication scheme over 6G. Abichandani et al. [25] enabled
secure UAV data sharing through smart contracts. Gai et al. [26]
introduced blockchain for identity authentication in UAV networks.

Several works have studied UAV-based edge computing. Liu et al.
[27] proposed a joint optimization approach for workflow assignment
and routing in a UAV-edge-cloud model to minimize cost and la-
tency. Messous et al. [28] developed a game-theoretic model for UAV
swarm offloading decisions balancing local processing and offloading
tradeoffs. Kang et al. [29] utilized UAVs for edge computing resource
allocation to maximize completed tasks under quality of service con-
straints. Callegaro et al. [30] addressed the UAV offloading decision
problem considering task latency and energy. Xu et al. [31] proposed
a blockchain-based resource pricing and trading scheme between edge
servers and UAVs using Stackelberg game theory. In [32], the authors
investigated UAV-based multi-access edge computing, decomposing the
cost minimization problem into stochastic games for offloading and
server deployment with learning algorithms to achieve polynomial time
complexity. Some studies have explored UAV-to-UAV offloading to
enhance resource utilization in multi-UAV scenarios, given the limited
coverage of edge/cloud servers compared to highly dynamic UAVs.
Mukherjee et al. [33] optimize multi-hop paths for computational
offloading in a UAV swarm to minimize energy consumption. Liu
et al. [34] study computation offloading from user UAVs to edge nodes
under latency constraints, optimizing offloading targets, channels, and
rates to reduce energy consumption. In [35], the authors jointly op-
timize real-time UAV relay deployment and resource allocation for
disaster rescue. Gao et al. [36] propose a deep reinforcement learning-
based task assignment method for UAV-based mobile crowdsensing to
optimize sensing coverage and data quality. Ouahouah et al. [37] study
task offloading from UAV cluster heads to members.

In summary, previous studies have explored blockchain applica-
tions in UAV-assisted scenarios, focusing on resource management,
data collection, and communication protocols. However, they have
not addressed the unique challenges of UANETs, such as resource
constraints and dynamic topology. Our improved PBFT algorithm in-
tegrates trust mechanisms within the consensus process, and our smart
contract-based strategy tackles task allocation from a security perspec-
tive. 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 contributes to the literature by presenting a lightweight
blockchain-based secure collaborative computing framework specifi-
cally designed for UANET, optimizing efficiency, security, and trust
management within a cohesive system.

3. System model

In this section, we introduce the system model of 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶, a secure
collaboration framework for resource-constrained UANET based on a
lightweight blockchain.

3.1. Overview of AerialBC

As shown in Fig. 1, 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 comprises a UAV swarm, a ground

station, and a blockchain network. The UAV swarm forms a UANET in

Computer Networks 251 (2024) 110612R. Xiong et al.
Fig. 1. System model of AerialBC.
the mission area, offering data collection and network communication
to ground sensors or devices. The blockchain is deployed on UANET
nodes, functioning as a distributed ledger that records the behavior
of the UAVs during task execution and collaborative computing pro-
cesses. This behavior serves as input for trust evaluation, determining
the trustworthiness of each node in the UANET. The trustworthiness
supports the selection of the committee in the consensus algorithm
and the trust mechanism in collaborative computing. Subsequently,
the participating UAVs upload task and resource information to the
blockchain for collaborative computing. The task allocation strategy,
deployed on the blockchain’s smart contract, makes task offloading
decisions for the participating UAVs based on time cost, and trustwor-
thiness while ensuring system efficiency and security requirements are
met. The UAVs adhere to the smart contract rules to complete the task
offloading process, ultimately aiming to enhance system performance,
security, and reliability.

3.2. Network model

In the collaborative computing of UANET, the primary entities
encompass a UAV swarm, ground station, and blockchain network.

UAV swarm. As shown in Fig. 1, a swarm of UAVs =
{1,… , 𝑛,… , 𝑁} is deployed to form UANET. Each UAV serves a dual
purpose: firstly, it functions as a UANET node and blockchain node,
actively participating in consensus and maintaining the integrity of the
blockchain network. Secondly, it acts as an aerial network access point,
gathering sensor or environmental data from the mission area and
providing data services to ground devices. Within the swarm of UANET,
UAVs can be distinguished based on their computing capabilities,
which are quantified by their computational capacity (measured in
CPU cycles per second). High-computing UAVs are those with higher
computational capacities and typically have more advanced processors
or dedicated hardware that enables them to perform compute-intensive
tasks more efficiently. In contrast, low-computing UAVs have lower
computational capacities and are usually equipped with less powerful
processors, limiting their ability to execute complex computations
quickly. To systematically identify high-computing and low-computing
UAVs within the network, we employ a registration process where each
UAV declares its computational capacity upon joining the network. This
information is recorded and maintained by the ground station or a
designated master node in the UANET blockchain. The computational
capacity data is then used in the task allocation process to optimally
offload tasks from task owner UAVs to resource provider UAVs based
on their computing capabilities, thus ensuring efficient utilization of
computational resources across the swarm.

UAV Ad hoc network. Massive UAVs can self-organize as a tem-
porary distributed ad hoc network = { , }, consisting of vertices
(UAVs) and edges (wireless links) . UAVs are connected to each
other through UAV-to-UAV (U2U) links to greatly increase the coverage
3

of the swarm. Each UAV can broadcast its messages to other UAVs
through the wireless channel.

Ground station. Ground station (GS) serves as the control center
of the UAV swarm with the highest authority. GS has the capability to
issue certificates for the admission of new UAVs into the network. In
our system, GS communicates with the swarm only at the beginning
through GS-to-UAV (G2U) links. However, UAVs may fail to transmit
data to the GS in real time due to no available backhaul links, especially
in emergencies. No one node can obtain multiple identities at the same
time.

Blockchain network. The blockchain is a distributed ledger sys-
tem with admission nodes and shared blocks. It can be deployed
within a UANET to create a secure, aerial wireless, private blockchain
network. UAV transactions on this blockchain are securely recorded
on an immutable and traceable ledger which supporting the trust
evaluation of UAVs. Furthermore, blockchain-based smart contracts,
serving as trusted computing tools, facilitate task allocation strate-
gies and standardize UANET collaboration process. In our work, the
transactions stored by UAVs in the blockchain include task-related
transactions, consensus participation records, and behavioral alerts.
Task-related transactions encompass task declarations, task allocations,
and task completion confirmations. These transactions create an im-
mutable record of the task lifecycle within the UANET, allowing for
traceability and dispute resolution. Consensus participation records
include votes and decisions made during the consensus process, which
contribute to the transparency and reliability of the network’s decision-
making process. Behavioral alerts are transactions that report potential
misbehavior or malicious activities by UAVs, which are crucial for
maintaining network security and trustworthiness.

3.3. Computation model

In the scenario of UANET cooperation in computational tasks, as
depicted in Fig. 1, due to the indivisibility of the computation tasks,
high-load UAV nodes have two options: either locally execute the
tasks or offload them to other UAVs for execution. Considering the
stochastic arrival and diverse nature of tasks, different UAVs have
varying demands for computational power at different times, indicating
whether they are providers or consumers of computing resources. Based
on this, we classify the nodes into Task Owner UAVs (TO), Resources
Provider UAVs (RP), and Relay Node UAVs (RN) that serve as relays for
data transmission in the UANET. Let us assume there are a total of 𝐽
resource provider UAVs in UANET, which can be represented by the set
 = {𝑅𝑃 𝑗 |𝑗 ∈ {1, 2,… , 𝐽}}. Here, 𝑅𝑃 𝑗 denotes the resource provider
UAV with index 𝑗. Similarly, let us assume there are 𝐼 task owner
UAVs, represented by the set = {𝑇𝑂𝑖|𝑖 ∈ {1, 2,… , 𝐼}}. Here, 𝑇𝑂𝑖
represents the task owner UAV with index 𝑖. During a task assignment,
each UAV submits a task requirement. If the 𝑇𝑂𝑖 has a computational
task that needs to be processed, this task can be represented by a triplet:

Computer Networks 251 (2024) 110612R. Xiong et al.

d
t
r
s

w
a
o
b
s
m
o
a
s
v

3

s
i
o
t
p
t

w
m
o
T
d

t
p
A
t
s
c
B
n
a

4

f
U
c
S
n
o
n
f

4

t
o
i
b
c
t
i

d
b
i
f
v
p
p
c
t
p
a
U
b

w
r
t
o
r
r
e
b
b
t
p

𝑇

w
r

u
b
t
A
p

v
a
t
s
f
h

4

s
k
w
k
u
n
f
h
d

𝑡𝑎𝑠𝑘𝑖 = {𝑠𝑖, 𝜅𝑖, 𝑡max
𝑖 }, where 𝑖 ∈ {1, 2,… , 𝐼}. In this representation, 𝑠𝑖

enotes the original data size of the computational task, 𝜅𝑖 represents
he computational efficiency of the task, i.e., the number of CPU cycles
equired per bit of data computation, and 𝑡max

𝑖 indicates the time
ensitivity or desired completion time of 𝑇𝑂𝑖 for the 𝑡𝑎𝑠𝑘𝑖.

There are two computation modes for 𝑡𝑎𝑠𝑘𝑖 of 𝑇𝑂𝑖: the local mode,
here the task is executed locally using the idle computing power
vailable on 𝑇𝑂𝑖; and the offloading mode, where the task is transferred
ver UANET to 𝑅𝑃 𝑗 with higher idle computing power. We introduce
inary variables {𝑥𝑖𝑗 |𝑗 ∈ {1, 2,… , 𝐽}} and 𝑥𝑙𝑜𝑐𝑎𝑙𝑖 to represent the
elected computation mode for 𝑡𝑎𝑠𝑘𝑖, whether it is offloading or local
ode, as well as the identifier of the resource provider UAV in case

f offloading mode. If the local mode is chosen, then 𝑥𝑙𝑜𝑐𝑎𝑙𝑖 = 1 and
ll 𝑥𝑖𝑗 variables are set to 0. If the offloading mode is chosen and the
elected resource provider UAV is 𝑅𝑃 𝑗 , then 𝑥𝑖𝑗 = 1 and all other binary
ariables are set to 0.

.4. Threat model

The following attack types are considered in 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶:
Single point of failure. A single point of failure occurs when a

ingle node failure results in the entire system becoming paralyzed. This
s unacceptable for UANET, which prioritizes high availability. Because
f the vulnerability of UANET nodes and their limited flight time due
o battery constraints, the probability of node replacement or single-
oint failure is high, making single-point of failure a significant security
hreat to UANET.
False task attack. UAVs, lacking physical security or having soft-

are vulnerabilities, are susceptible to being attacked and turned into
alicious nodes. Malicious nodes may intentionally issue false tasks to

ther nodes in order to waste their computational resources and energy.
his type of attack leads to resource wastage, task execution delays, and
egradation of system performance.
Active malicious nodes. In many IoT systems, normal nodes tend

o go into sleep mode to conserve energy when they have no tasks to
erform. This results in their low level of participation in the network.
ctive malicious nodes exploit this by remaining active and attempting

o gain control over the network. These nodes may engage in activities
uch as continuously broadcasting false information, interfering with
onsensus processes, or attempting to monopolize network resources.
y staying active and appearing more reliable than the dormant normal
odes, active malicious nodes can gradually increase their influence
nd control over the network.

. Improved trust-enhanced PBFT consensus

In this section, we propose an improved trust-based PBFT consensus
or the UANET blockchain. First, we design a trust evaluation based on
AV behavior records that considers swarm activity levels and working
haracteristics, effectively assessing reliability and establishing trust.
econd, by selecting high-trust UAVs to execute consensus, we sig-
ificantly improve efficiency, reduce overhead, and enable blockchain
n resource-constrained UAVs. Moreover, committee cycles handle dy-
amic join/departure, adapting to node changes due to power or
aults.

.1. Trust evaluation

In 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶, each UAV’s trustworthiness 𝑇 𝑟𝑢𝑠𝑡𝑖 is stored in the
rust ledger within block headers. It varies as behaviors are recorded
n-chain. UAV behavior records are composed of entries that log signif-
cant actions taken by UAVs within the network. These actions include,
ut are not limited to, successful task completions, participation in
onsensus rounds, timely response to task allocations, and adherence
o flight and safety protocols. Positive behaviors like block packaging
ncrease trust, while negatives like consensus failures decrease it. To
4

f

etect malicious behavior, each UAV monitors the actions of others
ased on predefined security rules and operational benchmarks. For
nstance, a UAV may be flagged as acting maliciously if it consistently
ails to complete assigned tasks, does not participate in consensus or
oting processes, attempts to monopolize resources, or deviates from
rescribed flight paths without valid reasons. When a UAV observes a
otential breach of protocol or malicious intent, it can initiate a suspi-
ion transaction by creating an accusation contract. This transaction is
hen broadcasted to the network, prompting other UAVs to vote on the
roposal based on their observations and the evidence provided. If the
ccusation is validated through consensus, the trust score of the accused
AV is adjusted accordingly, and the misconduct is recorded on the
lockchain. Inspired by [38], we divide 𝑇 𝑟𝑢𝑠𝑡𝑖 into two components:

𝑇 𝑟𝑢𝑠𝑡𝑖 = 𝜆1𝑇 𝑟𝑢𝑠𝑡
𝑃
𝑖 − 𝜆2𝑇 𝑟𝑢𝑠𝑡

𝑁
𝑖 , (1)

where, 𝑇 𝑟𝑢𝑠𝑡𝑃𝑖 denotes the positive behavior and 𝑇 𝑟𝑢𝑠𝑡𝑁𝑖 represents the
negative behavior. The weight coefficients for the two components are
denoted as 𝜆1 and 𝜆2 respectively. The negative part 𝑇 𝑟𝑢𝑠𝑡𝑁𝑖 can be
denoted as:

𝑇 𝑟𝑢𝑠𝑡𝑁𝑖 = min(
𝑛𝑒𝑔𝑖
∑

𝑘=0

𝑓𝛩(𝛩𝑘)
𝑛𝑒𝑔𝑖 − 𝑘 + 1

, 𝑇 𝑟𝑢𝑠𝑡𝑁𝑚𝑎𝑥), (2)

here 𝑛𝑒𝑔𝑖 represents the number of negative behaviors of UAV𝑖, 𝛩𝑘
epresents the negative behavior with index 𝑘, 𝑓𝛩 represents the func-
ion to decide the punishment of each negative behavior. The influence
f negative behaviors fades with index rather than time, and the most
ecent negative behavior will assume more influence. Once 𝑇 𝑟𝑢𝑠𝑡𝑁𝑖
eaches 𝑇 𝑟𝑢𝑠𝑡𝑁𝑚𝑎𝑥, the upper bound of the negative part, UAV𝑖 will be
xpelled. To better access the impact for the reward from the positive
ehaviors, we define 𝑖𝑑𝑥𝑛𝑔 is the recent closest index of negative
ehaviors. And 𝑧 = 𝑖𝑑𝑥𝑛𝑔+1, is a resetting variable used to keep track of
he starting point after each negative behavior. Meanwhile, the positive
art 𝑇 𝑟𝑢𝑠𝑡𝑃𝑖 is defined as:

𝑟𝑢𝑠𝑡𝑃𝑖 = min(
𝑝𝑜𝑠𝑖
∑

𝑘′=𝑧

𝑓𝛷(𝛷𝑘′)
𝑝𝑜𝑠𝑖 − 𝑘′ + 1

, 𝑇 𝑟𝑢𝑠𝑡𝑃𝑚𝑎𝑥), (3)

here 𝑝𝑜𝑠𝑖 represents the number of positive behaviors of UAV𝑖, 𝛷𝑘′

epresents the positive behavior with index 𝑘′, 𝑓𝛷 represents the func-
tion to decide the reward of each positive behavior, 𝑇 𝑟𝑢𝑠𝑡𝑃𝑚𝑎𝑥 is the
pper bound of 𝑇 𝑟𝑢𝑠𝑡𝑃𝑖 to avoid unlimited accumulation of the positive
ehaviors from the sequential activities, 𝑧 represents the index of
he first positive behavior after the most recent negative behavior.
ccumulating rewards from 𝑧 will drive UAVs to perform consecutive
ositive behaviors.

The 𝑇 𝑟𝑢𝑠𝑡𝑃𝑖 and 𝑇 𝑟𝑢𝑠𝑡𝑁𝑖 values which initialized as a fixed positive
alues are recorded by each node through transactions. These values
re finally summarized and computed by the consensus node to obtain
he trust values which we demonstrate detailedly in the following
ection. When the records are written into the block, the consensus
or the final trust values is reached. Thus, the blockchain maintains
istorical trust values.

.2. Consensus process

(1) Registration and Initialization. During initialization, ground
tation (GS) grants a pair of keys to each UAV𝑖, including the public
ey 𝑃𝐾 𝑖 and the secret key 𝑆𝐾 𝑖. Also, a certificate 𝐶𝑇𝐹 𝑖 is granted,
hich can be regarded as the result of encrypting 𝑃𝐾 𝑖 with the secret
ey of GS. As shown in Fig. 2, in the Enc function, the data is encrypted
sing the private key of the data receiver and 𝑛𝑜𝑛𝑐𝑒 means a random
umber, while in the Dec function, the corresponding public key is used
or decryption, since the public key of GS, denoted as 𝑃𝐾𝐺𝑆 , has been
ard-coded into UAVs, UAV𝑥 can verify the certificate from UAV𝑖 and
ecide whether it is permitted. In this process, private blockchain is
ormed with permitted UAVs.

Computer Networks 251 (2024) 110612R. Xiong et al.
Fig. 2. Process of authentication for a newly added UAV.

The GS serves as the Certificate Authority (CA) role in our system
and the network can be seems as lightweight permissioned blockchain
network.

(2) Transaction Generation and Broadcasting. Transactions in
the blockchain network are categorized into three types: regular trans-
actions in collaborative computing, suspicious transactions regarding
improper behavior of UAVs, and special transactions for modifying
the current consensus configuration (e.g., committee updates, view
switches).

When UAV𝑖 observes suspicious behavior by another UAV, it has the
capability to send a indicating distrust transaction to accuse the target
of suspicion, represented as transaction 𝑡𝑥𝑠 in the following format:

𝑡𝑥𝑠 =
⟨

𝑃𝐾 𝑖, 𝑃𝐾𝑗 , 𝑡𝑖𝑚𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒, 𝑆𝑖𝑔𝑖
⟩

. (4)

Here, the proposal contains the public keys of both parties, the time
and location of suspected node misconduct, evidence obtained through
communication or sensors (𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒), and the signature of the sus-
pected node (𝑆𝑖𝑔𝑖).

When a suspicious transaction is broadcasted in the UANET, other
UAVs vote on the proposal based on actual observation. If the proposal
receives enough votes according to subsequent weighted voting mech-
anisms, it will be included in a block by the committee. Consequently,
the suspected UAV is recorded with one negative behavior, leading to
a decrease in trustworthiness.

(3) Miner Selection. In traditional PBFT, each node exchanges
transactions with all others for consensus, incurring high communi-
cation demand that limits scalability. Our key idea is that since UAV
trustworthiness is recorded, we generate a small committee. Specifi-
cally, top 𝑀 trusted UAVs are selected as miners = {1,… , 𝑚,… ,𝑀},
𝑀 ≤ 𝑁 . Other UAVs are observers. Only miners perform transac-
tion/block processing and validation by taking turns as the primary.
Consensus switches primaries regularly and upon failures(called a view
change). Thus, consensus is only among miners, reducing consumption.
Observers propose transactions but do not participate. Moreover, dy-
namic miner/observer roles prevent attackers from easily controlling
the network.

UAVs enter/leave the blockchain dynamically due to factors like
battery/link failures, with varying trust over time. For scalability and
security, the committee is updated regularly (e.g. every 40 views) dur-
ing stage changes that temporarily refuse transactions. Since the trust
ledger is locally stored, 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 ’s stage change is faster and cheaper
than voting schemes based on DPoS. Only consensus members and
transaction senders need recording rather than all nodes continuously,
reducing complexity.
5

(4) Block Generation. Blocks are produced by miners. We do not
directly take the ranking of trustworthiness as the view change se-
quence, which makes the trustworthiness of the later phase significantly
lower than the early phase during a stage. Malicious UAVs tend to
attack the later phase. We rearrange the order of producers to make
the trustworthiness distribute more evenly, which can prevent attacks
against consecutive blocks.

4.3. Proposal voting scheme

In 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶, ensuring precise proposal voting and behavior record-
ing necessitates the consideration of UAV trustworthiness. This involves
assigning distinct weights to individual UAVs based on their trust lev-
els. Proposal outcomes should integrate both trust values and feedback.
We represent the weight of UAV𝑖 as:

𝑤𝑖 = max(𝑇 𝑟𝑢𝑠𝑡𝑖 − 𝑇 𝑟𝑢𝑠𝑡𝑁𝑚𝑎𝑥, 0). (5)

Thus, the voting result for a 𝑝 can be denoted as:

𝐿𝑝,𝑟 =

⎧

⎪

⎨

⎪

⎩

1, if
∑𝑁

𝑘=1 𝑤𝑘 ⋅ (𝑣𝑜𝑡𝑒𝑝(𝑘) + 1)

2 ⋅
∑𝑁

𝑘=1 𝑤𝑘
≥ 𝑟,

0, otherwise

(6)

where 𝑟 represents the required level for the swarm to approve 𝑝 and
its value varies in [0.5, 1]. Proposals with high significance should be
appointed a higher 𝑟. 𝑣𝑜𝑡𝑒𝑝(𝑘) represents the feedback from UAV𝑘 for
proposal 𝑝, which values in {−1, 0, 1}. The proposal is approved when
𝐿𝑝,𝑟 = 1.

5. Smart contract-based task allocation strategy

In this section, we design a task allocation strategy considering both
efficiency and security of UANET. Previous works [34,39] concentrated
tasks on resource-rich UAVs to improve utilization and efficiency.
However, they overlooked UAVs’ vulnerabilities like physical fragility
and limited energy, leading to reliability threats from malicious fake
task attacks. In contrast, our strategy considers operational costs like
transmission and execution costs, as well as risk costs in unstable
environments. It promotes balanced allocation using load metrics to
enhance robustness. It also incorporates node trustworthiness from
Section 4 to measure false task attack risks. This strategy is deployed
on blockchain smart contracts, providing a standardized collaborative
computing process in UANET through two-stage task offloading. The
objective is facilitating secure and efficient UAV cooperation. However,
upcoming routine or unplanned UAV replacements will impact ongoing
tasks. Key notations are shown in Table 1.

5.1. Task cost

In order to optimize the task allocation strategy of our 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶, a
modeling analysis is conducted on the operational costs and risk costs
under two different computational approaches for the task owner UAVs.
Additionally, considering time as a crucial factor affecting system per-
formance and efficiency (e.g., task completion time, transmission time),
the modeling primarily revolves around time in terms of operational
costs.

5.1.1. Local computing mode
(a) Task Computing Time. If the task owner UAV 𝑇𝑂𝑖 decides

to adopt the local computing mode, i.e., 𝑇𝑂𝑖 will execute the task
𝑡𝑎𝑠𝑘𝑖 = {𝑠𝑖, 𝜅𝑖, 𝑡max

𝑖 } locally. In this mode, the task duration is equal
to the execution time of the task locally. Therefore, the total duration
in the local mode 𝑡𝑙𝑜𝑐𝑎𝑙𝑖 can be represented as:

𝑡𝑙𝑜𝑐𝑎𝑙 = 𝑡𝑐𝑜𝑚, (7)
𝑖 𝑖

Computer Networks 251 (2024) 110612R. Xiong et al.

w
r
n
b
e
s
e
𝜂
l
s

𝑡

H

Table 1
The key notations.

Symbol Description

𝑇𝑂𝑖 Task owner UAV with index 𝑖
𝑅𝑃 𝑗 Resource provider UAV with index 𝑗
𝑡𝑎𝑠𝑘𝑖 The task assigned to UAV𝑖
𝑠𝑖 The original data size of 𝑡𝑎𝑠𝑘𝑖
𝜅𝑖 CPU cycles required per unit data for 𝑡𝑎𝑠𝑘𝑖
𝑡max
𝑖 Desired completion time for 𝑡𝑎𝑠𝑘𝑖
𝑓 𝑙𝑜𝑐𝑎𝑙
𝑖 Remaining local computational capacity of UAV𝑖

𝜋𝑖 Computational workload per unit desired completion time for
𝑡𝑎𝑠𝑘𝑖

𝛥𝑖𝑗 Risk factor associated with offloading a task from 𝑇𝑂𝑖 to
𝑅𝑃 𝑗 , dependent on UAV node trustworthiness

𝜉 Time cost coefficient
𝑥𝑖𝑗 Offloading decision for 𝑡𝑎𝑠𝑘𝑖, where 𝑥𝑖𝑗 = 1 indicates

offloading task from 𝑇𝑂𝑖 to 𝑅𝑃 𝑗

𝑥𝑙𝑜𝑐𝑎𝑙𝑖 Offloading decision for 𝑡𝑎𝑠𝑘𝑖, where 𝑥𝑙𝑜𝑐𝑎𝑙𝑖 = 1 indicates local
computation by 𝑇𝑂𝑖

𝑡𝑑2𝑑𝑖𝑗 Transmission time for offloading task from 𝑇𝑂𝑖 to 𝑅𝑃 𝑗

𝑡𝑐𝑜𝑚𝑖𝑗 Execution time for offloading task from 𝑇𝑂𝑖 to 𝑅𝑃 𝑗

𝑓 𝑐𝑎𝑝
𝑗 Idle computational capacity of 𝑅𝑃 𝑗 in the current

collaborative computing session
𝑓𝑖𝑗 Computational capacity allocated by 𝑅𝑃 𝑗 to 𝑇𝑂𝑖 in the

current collaborative computing session
𝐶𝑜𝑠𝑡𝑇𝑂𝑖

Total cost for 𝑇𝑂𝑖
𝑝𝑗 Load balancing metric for 𝑅𝑃 𝑗

where, 𝑡𝑐𝑜𝑚𝑖 represents the computation time of the task locally. As-
suming 𝑇𝑂𝑖 has local idle computing power 𝑓 𝑙𝑜𝑐𝑎𝑙

𝑖 , the execution time
locally can be expressed as:

𝑡𝑐𝑜𝑚𝑖 = 𝜅𝑖𝑠𝑖(𝑓 𝑙𝑜𝑐𝑎𝑙
𝑖)−1. (8)

(b) Cost Function. The cost of 𝑇𝑂𝑖 in local computing mode
primarily consists of the time cost incurred by task computations. Let
𝜉 be the coefficient representing the cost of tasks per unit of time. The
total cost 𝐶𝑜𝑠𝑡𝑙𝑜𝑐𝑎𝑙𝑇𝑂𝑖

of 𝑇𝑂𝑖 in local mode can be expressed as:

𝐶𝑜𝑠𝑡𝑙𝑜𝑐𝑎𝑙𝑇𝑂𝑖
= 𝜉𝑡𝑙𝑜𝑐𝑎𝑙𝑖 𝑥𝑙𝑜𝑐𝑎𝑙𝑖 (9)

where, 𝑥𝑙𝑜𝑐𝑎𝑙𝑖 = 1 indicates that 𝑇𝑂𝑖 selects the local computing mode.

5.1.2. Offloading computing mode
In the offloading computing mode, assuming 𝑇𝑂𝑖 offloads its task

to 𝑅𝑃 𝑗 for computation, the time cost of transferring the task from 𝑇𝑂𝑖
to 𝑅𝑃 𝑗 and the computation time cost on 𝑅𝑃 𝑗 collectively contribute
to the operational cost of the system. So, the completion time 𝑡𝑒𝑑𝑔𝑒𝑖𝑗 in
the offloading mode is represented as the sum of three processes: task
transfer time 𝑡𝑑2𝑑𝑖𝑗 , task execution time 𝑡𝑐𝑜𝑚𝑖𝑗 , and result feedback time
𝑡𝑟𝑒𝑠𝑖𝑗 . It can be expressed as follows:

𝑡𝑒𝑑𝑔𝑒𝑖𝑗 = 𝑡𝑑2𝑑𝑖𝑗 + 𝑡𝑐𝑜𝑚𝑖𝑗 + 𝑡𝑟𝑒𝑠𝑖𝑗 . (10)

Considering that the data size of the feedback results is typically
small, the term 𝑡𝑟𝑒𝑠 can be neglected. Furthermore, since the UAV node
always remains within the UANET during operation, there will not be
a situation where there is no feedback link due to node movement.

(a) Task Transfer Time. Due to unstable wireless mobility of
UAV nodes, the dynamic status of network topology and link make it
challenging to establish an end-to-end multi-hop forwarding commu-
nication model. In practice, IEEE 802.11 ad hoc networks in UANETs
require routing protocols like OLSR for multi-hop transmission support.
OLSR is currently the most widely used UANET routing protocol.
Complex environmental factors influence wireless links between UAV
nodes, resulting in fluctuating packet loss, delay, and bandwidth. Eval-
uating links solely on hop count is infeasible. We propose utilizing
OLSR’s link evaluation to assess highly dynamic communication states
and calculate multi-hop delays. OLSR assesses link quality by sending
6

HELLO packets to measure reception/transmission conditions. Received
link quality (LQ) and transmitted neighbor link quality (NLQ) indicate
historical packet loss rates. Higher LQ/NLQ corresponds to lower link
cost (ETX) - the expected transmissions needed to successfully transmit
a packet. However, LQ and NLQ have latency. Also, UAV mobil-
ity causes frequent link fluctuations. To address this, we incorporate
node positions, motion directions, and neighbor information into link
evaluation. The ETX calculation is:

𝐸𝑇𝑋(𝜂) = 𝑒𝑣𝜂𝛾 (𝜙(𝜂)𝜌(𝜂))−1, (11)

here 𝜂 is a link, 𝜙(𝜂) and 𝜌(𝜂) are the NLQ and LQ of 𝜂, 𝑣𝜂 is the
elative motion speed of connected nodes through 𝜂, and 𝛾 is a non-
egative coefficient. The relative speed is calculated and maintained
y propagating position and motion data in OLSR packets. In UANET,
nd-to-end paths comprise multiple links, with path cost as the link cost
um, 𝐸𝑇𝑋(𝑅) =

∑

𝜂∈𝑅 𝐸𝑇𝑋(𝜂), where 𝑅 is the minimum-cost end-to-
nd path and 𝜂 are its links. If 𝜔(𝜂) is the basic transmission rate of link
, the multi-hop end-to-end rate approximates the ratio of basic rate to
ink cost. For task 𝑖 of owner 𝑖 defined as task𝑖 = {𝑠𝑖, 𝜅𝑖, 𝑡𝑚𝑎𝑥𝑖 } with data
ize 𝑠𝑖, its estimated transmission time 𝑡𝑑2𝑑𝑖𝑗 to provider 𝑗 is:

𝑑2𝑑
𝑖𝑗 =

∑

𝜂∈𝑅𝑖𝑗

𝑡𝑑2𝑑𝜂 = 𝑠𝑖
∑

𝜂∈𝑅𝑖𝑗

𝐸𝑇𝑋(𝜂)
𝜔(𝜂)

. (12)

Let 𝜛𝑖𝑗 =
∑

𝜂∈𝑅𝑖𝑗

𝐸𝑇𝑋(𝜂)
𝜔(𝜂) be the sum of the 𝐸𝑇𝑋-weighted values for

each 𝜂 in 𝑅𝑖𝑗 . If 𝑠𝑖 represents the data transmission amount, then 𝑡𝑑2𝑑𝑖𝑗
can be expressed as:

𝑡𝑑2𝑑𝑖𝑗 = 𝑠𝑖𝜛𝑖𝑗 . (13)

(b) Task Computing Time. After the task is transmitted from 𝑇𝑂𝑖
to 𝑅𝑃 𝑗 , it undergoes computation at 𝑅𝑃 𝑗 . Let 𝑓𝑖𝑗 denote the amount
of computational resources allocated by 𝑅𝑃 𝑗 from its available idle
computing power to 𝑇𝑂𝑖, which corresponds to the number of CPU
cycles per second that can be utilized. Since the total CPU cycles
required for the computation task 𝑡𝑎𝑠𝑘𝑖 = {𝑠𝑖, 𝜅𝑖, 𝑡max

𝑖 } is 𝜅𝑖𝑠𝑖, the
expected execution time of the task at 𝑅𝑃 𝑗 , denoted as 𝑡𝑐𝑜𝑚𝑖𝑗 , can be
expressed as:

𝑡𝑐𝑜𝑚𝑖𝑗 = 𝜅𝑖𝑠𝑖(𝑓𝑖𝑗)
−1. (14)

For 𝑅𝑃 𝑗 , the available idle computing resources it can provide are
limited. Let 𝑓 𝑐𝑎𝑝

𝑗 represent the upper limit of idle computing power that
𝑅𝑃 𝑗 can offer in this collaborative computation. Therefore, for all UAVs
that choose to offload their tasks to 𝑅𝑃 𝑗 , the total computing power
provided by 𝑅𝑃 𝑗 should not exceed its own computing capacity, i.e.,
𝐼
∑

𝑖=1
𝑓𝑖𝑗𝑥𝑖𝑗 ≤ 𝑓 𝑐𝑎𝑝

𝑗 . (15)

Assuming that 𝑅𝑃 𝑗 allocates tasks using its maximum computing
power and distributes the computational resources proportionally when
receiving multiple tasks. Considering that UANET is a time-sensitive
network and the computational workload is also a crucial factor in task
allocation, we employ a weighted allocation method based on the unit
expected computation time. It can be expressed as follows:

𝑓𝑖𝑗 = 𝑓 𝑐𝑎𝑝
𝑗

𝜅𝑖𝑠𝑖
𝑡max
𝑖

∑𝐼
𝑘=1 𝑥𝑘𝑗

𝜅𝑘𝑠𝑘
𝑡max
𝑘

. (16)

ere, 𝜅𝑖𝑠𝑖
𝑡max
𝑖

serves as a weighted indicator, representing the computa-
tional workload of a task per unit expected time. Under this allocation
method, tasks with higher computational workloads per unit expected
time are assigned greater weights, which helps improve the efficiency
of completing time-sensitive tasks. Let 𝜋𝑖 = 𝑥𝑖𝑗𝜅𝑖𝑠𝑖

𝑡max
𝑖

, then the expected
computation execution time of the task at 𝑅𝑃 𝑗 can be expressed as:

𝑡𝑐𝑜𝑚𝑖𝑗 =
𝜅𝑖𝑠𝑖

∑𝐼
𝑘=1 𝜋𝑘
𝑐𝑎𝑝 . (17)
𝜋𝑖𝑥𝑖𝑗𝑓𝑗

Computer Networks 251 (2024) 110612R. Xiong et al.

t
i
i
r
a
U
o

m

5

d
r

𝒙
𝑇

𝑠

f

f

𝐶

a
a
m
w
{
f
a
t
t
v
c
c
I
d
U
i
c
u

5

o
U
t
m
i
d
d
o

t
d
m
w

(c) Cost Function. In addition to the aforementioned costs of
ransmission time and computation time, we consider the security
mplications of task offloading for 𝑇𝑂𝑖. Due to limited battery capac-
ty and physical vulnerability of UAVs, concentrating tasks on a few
esource-rich UAVs can negatively impact the system’s performance
nd availability in case of a failure or attack on any one of those
AVs. Therefore, to enhance system robustness and mitigate the risk
f single points of failure, we introduce a load balancing metric 𝑝𝑗 ,

which increases with the number of tasks offloaded to resource UAV
𝑅𝑃 𝑗 , representing the increasing probability of encountering a single
point of failure. It can be defined as follows:

𝑝𝑗 = 𝑝𝑖𝑛𝑖𝑗 + 𝑝𝑎𝑑𝑗𝑗 (
𝐼
∑

𝑖=1
𝜋𝑖𝑥𝑖𝑗), (18)

where, the load balancing metric 𝑝𝑖𝑛𝑖𝑗 is inversely proportional to the
current battery level of 𝑅𝑃 𝑗 . Considering that UAVs with lower battery
levels have limited endurance, an excessive task burden can deplete
their energy, affecting the reliability of task execution. Therefore, tasks
are prioritized to be assigned to UAVs with higher battery levels to
ensure stable system operation. On the other hand, 𝑝𝑎𝑑𝑗𝑗 is related to the
inherent characteristics of the resource provider UAV itself. If the UAV
possesses unique capabilities or performs critical tasks, this value will
be higher. Due to variations in functionality or carried sensors among
UAVs, some UAVs may be better suited for executing specific types
of tasks in certain environments. These UAVs possess more valuable
energy and computing resources, making their failure or malfunction
pose a greater risk of system unavailability.

In addition, we also take into consideration the security issue of
malicious nodes conducting fake task attacks. By combining the trust
mechanism discussed in Section 4, the risk coefficient 𝛥𝑖𝑗 of offloading
𝑇𝑂𝑖 to 𝑅𝑃𝑗 is represented as the normalized ratio of node trustwor-
thiness between 𝑅𝑃𝑗 and 𝑇𝑂𝑖. A larger 𝛥𝑖𝑗 indicates that the task is
offloaded from a low-trust node to a high-trust node, resulting in a
higher risk of fake task attacks. Therefore, the cost of offloading also
increases. Hence, the final cost function of 𝑇𝑂𝑖 under the offloading
mode can be expressed as:

𝐶𝑜𝑠𝑡𝑒𝑑𝑔𝑒𝑇𝑂𝑖
=

𝐽
∑

𝑗=1
(𝜉𝛥𝑖𝑗 (𝑡𝑑2𝑑𝑖𝑗 + 𝑡𝑐𝑜𝑚𝑖𝑗) + 𝛥𝑖𝑗𝑝𝑗𝜋𝑖)𝑥𝑖𝑗 . (19)

5.1.3. Total cost function
In practices the execution time of tasks which need to be offloaded

is much longer than the consensus time, thus we neglect the cost of
consensus time in our scenario.

By combining the task cost functions of 𝑇𝑂𝑖 under the two com-
puting modes mentioned above, we derive the total cost function it
imposes on the 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶, which can be represented by the following
equation:

𝐶𝑜𝑠𝑡𝑇𝑂𝑖
= 𝐶𝑜𝑠𝑡𝑒𝑑𝑔𝑒𝑇𝑂𝑖

+ 𝜉𝑡𝑙𝑜𝑐𝑎𝑙𝑖 𝑥𝑙𝑜𝑐𝑎𝑙𝑖 . (20)

During the actual offloading decision-making process, 𝑇𝑂𝑖 mini-
izes task costs by adjusting its offloading decision 𝒙𝒊 =

[𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝐽 , 𝑥𝑙𝑜𝑐𝑎𝑙𝑖] based on the conditions of offloading partici-
pants. This problem can be formulated as follows:

min
𝒙𝒊

𝐶𝑜𝑠𝑡𝑇𝑂𝑖

(

𝒙𝒊
)

𝑠.𝑡.

⎧

⎪

⎨

⎪

⎩

∑𝐽
𝑗=1 𝑥𝑖𝑗 + 𝑥𝑙𝑜𝑐𝑎𝑙𝑖 = 1,

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑗 ∈ {1, 2,… , 𝐽},

𝑥𝑙𝑜𝑐𝑎𝑙𝑖 ∈ {0, 1}.

(21)

.2. Task allocation strategy

The task allocation strategy aims to find the optimal task offloading
ecision for UAVs, in order to improve the resource utilization and
obustness of UANET. Let 𝒙 represent the offloading decision of 𝑇𝑂 ,
7

𝒊 𝑖 m
̂ 𝒊 denote the offloading decisions of other task owner UAVs excluding
𝑂𝑖, and the load balancing indicator 𝑝𝑗 of 𝑅𝑃 𝑗 is also determined by

the decisions of other task owner UAVs, and we utilize 𝒑(𝒙𝒊, �̂�𝒊) as the
load balancing decision function for resource provider UAVs, which are
influenced by the decision-making of the task owner UAVs. Therefore,
for an individual 𝑇𝑂𝑖’s offloading decision problem, the optimization
problem to be solved is as follows:

min
𝒙𝒊

𝐶𝑜𝑠𝑡𝑇𝑂𝑖

(

𝒙𝒊, �̂�𝒊,𝒑(𝒙𝒊, �̂�𝒊)
)

.𝑡.

⎧

⎪

⎨

⎪

⎩

∑𝐽
𝑗=1 𝑥𝑖𝑗 + 𝑥𝑙𝑜𝑐𝑎𝑙𝑖 = 1,

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑗 ∈ {1, 2,… , 𝐽},

𝑥𝑙𝑜𝑐𝑎𝑙𝑖 ∈ {0, 1}.

(22)

For a 𝑇𝑂𝑖, assuming the decisions of other task owner UAVs are
ixed, the optimization objective of the 𝑇𝑂𝑖 is to minimize the task

cost by adjusting its own decision. The computational power and risk
cost allocated to the target resource provider UAV are affected by the
decisions of other task owner UAVs. For example, when there are more
tasks unloaded onto the same resource provider UAV, the lower the
allocated computational power and the higher the risk. Therefore, the
total completion cost increases. Conversely, when there are fewer tasks,
the completion cost decreases. As a result, the decisions among task
owner UAVs can ultimately reach an equilibrium state in which no
task owner UAV can unilaterally modify its decision to reduce the task
cost. Thus, the equilibrium state of this problem can be defined as
the existence of an optimal decision 𝒙∗𝒊 for any 𝑇𝑂𝑖 that satisfies the
ollowing inequality:

𝑜𝑠𝑡𝑇𝑂𝑖

(

𝒑(𝒙∗𝒊 , �̂�
∗
𝒊),𝒙

∗
𝒊 , �̂�

∗
𝒊
)

≥ 𝐶𝑜𝑠𝑡𝑇𝑂𝑖

(

𝒑(𝒙𝒊, �̂�∗𝒊),𝒙𝒊, �̂�
∗
𝒊
)

. (23)

To address this issue, we design a task cost fast decline (TCFD)
lgorithm, as shown in Algorithm 1, to obtain optimal pricing and
llocation strategies in equilibrium state, to meet the rapid decision-
aking requirements of the main nodes in time-sensitive UANET. First,
e initialize an initial solution (𝒑(0),𝒙(0)), where 𝑥𝑙𝑜𝑐𝑎𝑙,(0)𝑖 = 1,∀𝑖 ∈
1, 2,… , 𝐼}, indicating that all tasks of the UAVs are initially scheduled
or local computation. Next, we set a maximum iteration count 𝑇 and
n iteration counter 𝜏 = 0. Perform a maximum of 𝑇 iterations, where
he solution in each iteration is denoted as (𝒑(𝜏),𝒙(𝜏)). The next itera-
ion’s solution is initially set to (𝒑(𝜏+1),𝒙(𝜏+1)) = (𝒑(𝜏),𝒙(𝜏)). Set a marker
alue 𝛬 = −1, then iterate through all task owner UAVs. For each 𝑇𝑂𝑖,
alculate the task cost 𝐶𝑜𝑠𝑡𝑐𝑢𝑟𝑇𝑂𝑖

based on the decision in (𝒑(𝜏),𝒙(𝜏)), and
ompute the minimum task cost 𝐶𝑜𝑠𝑡𝑏𝑒𝑠𝑡𝑇𝑂𝑖

using the decision in (𝒑(𝜏), �̂�(𝜏)𝒊).
f the difference between these two costs is greater than 𝛬, save this
ifference and record 𝒙𝒊(𝜏+1). After iterating through all task owner
AVs, update (𝒑(𝜏+1),𝒙(𝜏+1)) with the last recorded 𝒙𝒊(𝜏+1). Then check

f (𝒑(𝜏+1),𝒙(𝜏+1)) is equal to (𝒑(𝜏),𝒙(𝜏)). If they are equal, it indicates
onvergence of the decision; otherwise, continue to the next iteration
ntil the maximum iteration count is reached.

.3. Two-stage collaborative computing

Due to varying computational demands and resource availability
f UAVs over time, the identities of task owner and resource provider
AVs are fixed for a period but differ across intervals. To accommodate

his dynamism, the timeline is discretized into cycles of length 𝜏. The
aster node periodically initiates collaboration at fixed intervals. For

nstance, during the 𝑖th cycle between times 𝑡𝑖 and 𝑡𝑖+1, allocation
ecisions are made. After 𝑡𝑖+1, participants execute task offloading in a
istributed manner. This allows nodes to flexibly become resource/task
wners across intervals.

We divide collaboration into two stages: centralized ‘‘task alloca-
ion’’ and distributed ‘‘task offloading’’. Allocation must first be ad-
ressed to optimize performance and security. In distributed decision-
aking, stable states are reached through multi-round negotiations,
hich are less efficient and may fail to converge. Centralized decision-
aking enables quicker plans, improving efficiency. Thus, we adopt a

Computer Networks 251 (2024) 110612R. Xiong et al.
Algorithm 1: Task Cost Fast Decline algorithm

1 Initialize (𝒑(0),𝒙(0)) with 𝑥𝑙𝑜𝑐𝑎𝑙,(0)𝑖 = 1,∀𝑖 ∈ [1, 𝐼] ;
2 Set maximum iteration round 𝑇 and current round 𝜏 = 0;
3 while 𝜏 < 𝑇 do
4 (𝒑(𝜏+1),𝒙(𝜏+1)) ← (𝒑(𝜏),𝒙(𝜏)), 𝛬 ← −1, 𝛱 ← 0;
5 for 𝑖 ← 1 to 𝐼 do
6 Calculate 𝐶𝑜𝑠𝑡𝑇𝑂𝑖

for 𝑇𝑂𝑖 with (𝒑(𝜏),𝒙(𝜏)) as 𝐶𝑜𝑠𝑡𝑐𝑢𝑟𝑇𝑂𝑖
;

7 Calculate optimal 𝐶𝑜𝑠𝑡𝑇𝑂𝑖
for 𝑇𝑂𝑖 with (𝒑(𝜏), �̂�𝑖

(𝜏)) as
(𝐶𝑜𝑠𝑡𝑏𝑒𝑠𝑡𝑇𝑂𝑖

,𝒙𝑖(𝜏+1));
8 if (𝐶𝑜𝑠𝑡𝑐𝑢𝑟𝑇𝑂𝑖

− 𝐶𝑜𝑠𝑡𝑏𝑒𝑠𝑡𝑇𝑂𝑖
) > 𝛬 then

9 𝛬 ← 𝐶𝑜𝑠𝑡𝑐𝑢𝑟𝑇𝑂𝑖
− 𝐶𝑜𝑠𝑡𝑏𝑒𝑠𝑡𝑇𝑂𝑖

, 𝛱 ← 𝒙𝑖(𝜏+1);
10 end
11 end
12 Update (𝒑(𝜏+1),𝒙(𝜏+1)) with 𝛱 ;
13 if ‖‖

‖

𝒙(𝜏+1) − 𝒙(𝜏)‖‖
‖

== 0 then
14 break;
15 end
16 𝜏 ← 𝜏 + 1;
17 end

Fig. 3. Two-stage collaborative computing process in UANET.

centralized approach with a highly trusted master node for decision-
making to mitigate single point failures. It collects information, receives
participant data, and executes the algorithm. Subsequently, partici-
pants proceed with offloading by invoking smart contracts, ensuring
standardized execution. Deviations by malicious nodes are detected
and recorded during offloading, decreasing their trust. Nodes are ex-
pelled once negative thresholds are reached. Fig. 3 shows the two-stage
collaboration. Details are:

(1) Task Allocation. The collaborative computing cycle begins
as the consensus master node establishes a new task allocation con-
tract. Nodes willing to participate in collaborative computing, including
those with task demands and surplus computational power, share their
collaborative information with the master node through this smart
contract. Prior to the completion of the task allocation process, the
master node executes the task allocation algorithm and uploads the
decision outcome to the contract for dissemination to all participating
nodes. Based on the master node’s decision, each participating node
proceeds with the subsequent task collaboration process.

(2) Task Offloading. The task offloading process is initiated as
the task owner UAV and resource provider UAV jointly create a task
offloading contract through mutual agreement. Subsequently, following
the contract rules, both parties engage in distributed processes such
as data transmission, task computation, and result feedback. Upon
receiving the computation results, the task owner UAV verifies them
and sends an acknowledgment signature to the resource provider UAV.
8

The details or summaries of the computational tasks, results, and ac-
knowledgment signatures are uploaded and queried through the smart
contract to ensure traceability in the collaborative computing process,
providing a reference for trust evaluation in Section 4.

5.4. Smart contract design

Based on the description of aforementioned collaborative computing
process, design corresponding smart contracts. There are primarily
three types of contracts: task allocation contract, task offloading con-
tract, and accusation contract. The task allocation contract is created
by the master node at the beginning of each cycle. The task offloading
contract is jointly signed by the task owner UAV and resource provider
UAV before the task offloading process commences. The accusation
contract is created by the accusing UAV that suspects the behavior of
other UAVs.

5.4.1. Task allocation contract
The task allocation contract is primarily used for information gath-

ering and task allocation decisions by the master node. In this process,
task owner UAVs register their task attributes using the taskOwnerReg-
ister function, while resource provider UAVs register their computing
resources and load balancing metrics using the resourceProviderRegister
function. After collecting network information and coordinating with
participating UAVs in the computation, the master node executes the
task allocation algorithm and uploads all the information, along with
the task allocation results, using the setPrimaryResult function. The
various participants in collaboration can view the task allocation results
through the getPrimaryResult function, as shown in Algorithm 2.

Algorithm 2: Task Allocation Contract
1 create():
2 The master node creates a task allocation contract for the

current cycle;
3 taskOwnerRegister(𝑠𝑖, 𝜅𝑖, 𝑡max

𝑖 , 𝑓 𝑙𝑜𝑐𝑎𝑙
𝑖):

4 Task owner UAV provides the registration information and
submits {𝑠𝑖, 𝜅𝑖, 𝑡max

𝑖 , 𝑓 𝑙𝑜𝑐𝑎𝑙
𝑖 };

5 resourceProviderRegister(𝑓 𝑐𝑎𝑝
𝑗 , 𝑝𝑖𝑛𝑖𝑗 , 𝑝𝑎𝑑𝑗𝑗):

6 Resource provider UAV register and submits
{𝑓 𝑐𝑎𝑝

𝑗 , 𝑝𝑖𝑛𝑖𝑗 , 𝑝𝑎𝑑𝑗𝑗 };
7 setPrimaryResult(𝑟𝑒𝑠𝑢𝑙𝑡):
8 The primary node uploaded the task allocation results;
9 getPrimaryResult():
10 The participants in the collaborative computing get the

task allocation results;

5.4.2. Task offloading contract
Upon mutual confirmation by the task offloading parties, a task

offloading contract is jointly signed by the task owner UAV and the
resource provider UAV. Subsequently, the task digest is uploaded via
the submitTaskDigest function, while the actual task data can be trans-
mitted offline to the resource provider UAV. Once the computation is
completed, the result digest is uploaded through the submitResultDigest
function and returned offline as well. The task owner UAV verifies the
results, uploads the reception signature using the submitResultSign func-
tion, and concludes the task offloading process, as shown in Algorithm
3.

5.4.3. Accusation contract
When UAV𝑖 suspects the behaviors of UAV𝑗 (e.g., failure to un-

load tasks as per assignment), UAV𝑖 initiates a suspicion transaction
by creating an accusation contract. Other UAVs vote on the accu-
sation proposal through Vote function, and the contract internally
invokes CountVote function to tally the voting results based on the

Computer Networks 251 (2024) 110612R. Xiong et al.

i
s
o
t
r
n
f
s
g

n
p
i
U

6

6

m
C
n
e
l
a
t
v
r
a
w
m
a
r
o

6

c
d
e
1

Algorithm 3: Task Offloading Contract
1 create(𝑃𝐾 𝑖, 𝑃𝐾𝑗 , 𝑡𝑖𝑚𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒, 𝑆𝑖𝑔𝑖):
2 Task owner UAV and resource provider UAV jointly sign to

create a task offloading contract;
3 submitTaskDigest(𝑡𝑎𝑠𝑘𝐷𝑖𝑔𝑒𝑠𝑡):
4 The task owner UAV submits a summary of the task;
5 submitResultDigest(𝑟𝑒𝑠𝑢𝑙𝑡𝐷𝑖𝑔𝑒𝑠𝑡):
6 The resource provider UAV submits a summary of the

results;
7 submitResultSign(𝑠𝑖𝑔𝑛):
8 The task owner UAV submits an acknowledgment

signature, concluding the task offloading process;

proposal scheme in Section 4. If the vote count passes, the master node
broadcasts the accused UAV’s misconduct along with the signatures
of the voting UAVs via block propagation through RecordMisbehaviour
function, as shown in Algorithm 4.

The primary function of smart contracts revolves around meticu-
lously recording allocation inputs and outputs, allowing us to largely
disregard computational and communication loads considerations
when conducting evaluation.

Algorithm 4: Accusation Contract
1 create(𝑆𝑖𝑔𝑖,𝑆𝑖𝑔𝑗):
2 The accusing UAV initiates a suspicion transaction;
3 Vote(𝑆𝑖𝑔):
4 Other UAVs participate in the voting process;
5 CountVote():
6 The contract internally employs a proposal voting scheme

to calculate the voting results;
7 RecordMisbehaviour(𝑆𝑖𝑔𝑠):
8 Once the voting results are approved, the master node

records the misconduct in the blockchain;

6. Performance evaluation

6.1. Security analysis

6.1.1. Security analysis framework
In order to provide a structured and comprehensive security analysis

of the 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 framework, we adopt a multi-faceted security analysis
framework that encompasses the following components:

Threat Modeling: Identifying potential threats and vulnerabilities
within the UANET environment, such as single point failures, false task
attacks, and active malicious nodes.

Risk Assessment: Evaluating the likelihood and impact of identi-
fied threats materializing, and determining the risk levels associated
with different network operations.

Security Mechanisms: Detailing the specific security mechanisms
employed to counter identified threats, including cryptographic meth-
ods, consensus algorithms, trust evaluation, and network protocols.

Validation and Verification: Conducting simulations and theoret-
ical analyses to validate the effectiveness of security mechanisms, and
verifying their performance against industry-standard security bench-
marks.

Incident Response: Outlining the procedures for detecting, re-
sponding to, and recovering from security incidents, ensuring the
UANET’s resilience and continuity of operations.

Using this framework, we systematically address the security con-
cerns within the UANET by implementing robust security mechanisms
and protocols, and provide a thorough analysis of their effectiveness.
9

o

6.1.2. Security analysis results
Through a combination of attack simulations, we demonstrate the

system’s ability to withstand single points of failure, mitigate false task
attacks, and prevent the actions of active malicious nodes.

(a) Preventing Single Point Failure. By introducing the load bal-
ancing metric 𝑝, we can assess the workload of UAVs in UANET. When
tasks are concentrated on a few UAVs, the value of the load balancing
metric increases, indicating an imbalanced task allocation and a higher
risk of system unavailability due to the failure or malfunction of a
single UAV. In task allocation strategy, we consider the load balancing
metric an essential parameter for measuring task cost. By minimizing
task costs, we balance task execution efficiency and task offloading
safety, effectively reducing the risk of single-point failures in UANET.
As for the blockchain scheme, due to the inherently distributed nature
of the blockchain itself and the committee period set in the consensus
algorithm proposed in this paper, UANET nodes in the blockchain
network can dynamically join and leave, effectively coping with the
dynamic changes in the blockchain node caused by single point failures.

(b) Mitigating False Task Attack. UAVs with lower trustworthi-
ness, assessed by a trust evaluation mechanism, are more prone to
inappropriate behavior, including non-cooperation and false message
transmission. These UAVs are categorized as potential malicious nodes.
To mitigate the influence of false task attacks initiated by such nodes
on system security and performance, we introduce a risk coefficient 𝛥𝑖𝑗
n the task cost computation. This implies that, through task allocation
trategies, UAVs with lower trustworthiness encounter challenges when
ffloading tasks to UAVs with higher trustworthiness. Instead, they tend
o collaborate with UAVs of similar trustworthiness, reducing the risk of
esource wastage among highly trustworthy nodes. UAVs accumulating
egative behavior due to non-compliance with task allocation rules
ace expulsion from the UANET if their trustworthiness drops below a
pecified threshold. These methods help prevent malicious nodes from
radually gaining control over the network.
(c) Preventing Active Malicious Nodes. UAV nodes’ trustworthi-

ess in the consensus and network is closely linked to their level of
articipation and activity. For example, absentee voting on proposals
s considered negative behavior. Hence, active engagement by normal
AV nodes is essential to reduce the impact of actively malicious nodes.

.2. Lightweight blockchain verification

.2.1. Simulation setup
The tests involved simulating a UANET on a 12 vCPU, 24GiB

emory server running Ubuntu 18.04 with Intel Cascade Lake 2.6 GHz
PUs. To simulate UAVs within the UANET, different ports were inter-
ally used on the server. A modified Python implementation of PBFT
nabled the consensus process. Multiple miner and observer nodes were
aunched. UANET sizes were set to 4, 12, 20, 28, 36, 44, 52 and 60, with
maximum 20 consensus nodes. When UAVs were less than 20, all par-

icipated in consensus. For over 20 UAVs, only the top 20 nodes by trust
alue were selected as consensus nodes, since consensus complexity
elates to committee size. Each node submitted collaboration requests
t a fixed frequency during consensus. A standard PBFT consensus
as used for comparison, primarily evaluating consensus latency and
essage count to highlight the performance advantages of our proposed

pproach.The experiments focused on how to improve efficiency and
educe overhead for the lightweight blockchain consensus, rather than
verall UANET performance.

.2.2. Results and analysis
Fig. 4 illustrates the variation of trust values for a single mali-

ious node across consensus rounds, showcasing the operation of the
esigned mechanism for evaluating node trustworthiness. The node
ngaged in three negative or malicious behaviors out of a total of
000 consensus rounds. Despite accumulating a considerable amount

f trust through actions such as participating in proposal voting, the

Computer Networks 251 (2024) 110612R. Xiong et al.

w
b

s
p
g
r
o
b
l
T
i
e
e
i
c
w

6

a
R
s
r
r
H
t
d
d
l

F
w
U
L
b
p
h
s
c

Fig. 4. Variation of trust values for a malicious UAV across consensus rounds.

upper bound of its trustworthiness decreases as its negative behavior
increases. This effectively assesses the trustworthiness of malicious or
unstable nodes, enabling rapid differentiation of trust levels among
UANET nodes.

Fig. 5 displays the proportion of malicious miners over consensus
rounds, comparing the proposed 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 consensus to PBFT and PoW.
Subfigures (a)–(d) show initial malicious node proportions of 0.01,
0.1, 0.2 and 0.3, evaluating malicious miner proportions every 100
rounds. For PoW and PBFT, the malicious miner proportion roughly
equals the initial malicious nodes due to miner selection based on
computation and primary node rotation. In contrast, 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 ’s trust
evaluation mechanism enables quick identification of malicious nodes,
significantly reducing malicious miners and enhancing security. Nodes
with more negative behaviors have lower trust, making miner com-
mittee entry difficult, effectively safeguarding consensus. Thus, the
trust mechanism allows 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 to adaptively adjust malicious miner
proportions. Fig. 6(a) shows consensus latency versus UANET size,
comparing the PBFT-based method to the proposed 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶. Results
show our method significantly reduces transaction propagation latency
by reducing consensus nodes. With 20 committee nodes, both methods
have similar latency for under 20 UAVs. However, above 20 UAVs, the
reduced committee yields substantially decreased latency, averaging
47% lower across scales. This is not just interactions among the 20
UAVs, but communication with the cluster, implying cluster consensus
adapts accordingly as nodes increase. In essence, limiting the com-
mittee enables 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 to maintain consensus efficiency even as the
overall UANET grows, overcoming bottlenecks facing standard PBFT
implementations. Fig. 6(b) exhibits consensus message count versus
UANET size for the PBFT method and 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶. Results demonstrate
𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 effectively reduces messages. Analogous to latency, when
UAVs exceed 20, there is a major decrease in messages, averaging
76% lower across scales. By optimizing latency and messages, 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶
better adapts to UANET’s constraints on computation and scalabil-
ity compared to standard PBFT. Overall, our 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶, demonstrates
significant improvements in efficiency and security for collaborative
computing in UANET. Compared to [13,14], and [15], 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 fills
a critical gap by providing a comprehensive, lightweight, and secure
blockchain framework tailored for UANET, ensuring efficient resource
utilization and robust security in highly dynamic environments.

6.3. Task allocation strategy verification

6.3.1. Simulation setup
We randomly generate UAV nodes in 3D space, with 5–40 task

owner UAVs and 6–24 resource provider UAVs. Connectivity is checked
10

based on node communication ranges. If disconnected components
Table 2
The values of key parameters.

Symbol Value [unit]

𝑠𝑖 1.2 ∗ 107−1.5 ∗ 107 [bit]
𝜅𝑖 10000 [cycle/bit]
𝑡max
𝑖 180−220 [s]
𝜉 0.1−0.3

𝑣𝜂 0−2 [m/s]
𝑑𝑐 30 [m]
𝑓 𝑙𝑜𝑐𝑎𝑙
𝑖 2 ∗ 108−5 ∗ 108 [Hz]

𝛥𝑖𝑗 0.9−1.1

𝜀𝑗 2.5 ∗ 10−8

𝑝𝑖𝑛𝑖𝑗 6 ∗ 10−9

𝑝𝑎𝑑𝑗𝑗 6 ∗ 10−18

𝑓 𝑐𝑎𝑝
𝑗 1.5 ∗ 109−2 ∗ 109 [Hz]

exist, new nodes are added to connect all nodes into a single UANET. A
minimum safe inter-UAV flight distance is maintained. For simulations,
we assume link quality between nodes 𝑖 and 𝑗 depends on their relative
distance and velocity, setting it as:

𝐸𝑇𝑋𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑒𝑣𝑖𝑗 𝛾 ,

𝑒
(

2𝑑𝑖𝑗/𝑑𝑐
)

−1 ⋅ 𝑒𝑣𝑖𝑗 𝛾 ,

∞,

0 ≤ 𝑑𝑖𝑗 ≤ 𝑑𝑐/2
𝑑𝑐/2 ≤ 𝑑𝑖𝑗 ≤ 𝑑𝑐

𝑑𝑖𝑗 > 𝑑𝑐
(24)

here, 𝑑𝑖𝑗 and 𝑣𝑖𝑗 denote the relative distance and relative velocity
etween two UAVs respectively, with 𝛾 set to 0.3.

In the UANET, certain UAVs are selected as task owners or re-
ource providers for collaborative computing, with remaining UAVs
articipating as routing relay nodes. Figs. 7(a) and 7(b) illustrate the
enerated 3D and 2D top-down UANET topology and link quality,
espectively. Red triangles are resource providers, green crosses are task
wners, and black points are relays. Dashed lines show wireless links
etween UAVs, with darkness indicating quality. Once the topology and
inks are obtained, shortest routes are calculated via Floyd’s algorithm.
hereafter, task allocation decisions are made based on collaboration

nformation between involved UAVs. Overall, the simulations aim to
valuate collaborative computing performance given realistic wireless
nvironments. Key parameter values used in experiments are presented
n Table 2. Allocated capacities for idle UAVs are 3–10 times the local
apacity of a single task owner. Other parameters are randomly set
ithin defined ranges.

.3.2. Results and analysis
(a) Task Offloading Results. Figs. 8(a) and 8(b) depict an ex-

mple task offloading assignment from 3D and 2D top-down views.
ed nodes are resource providers, green nodes are task owners, with
olid black lines showing allocation. There are 20 task owners and 12
esource providers. Most offloading requirements are fulfilled by the
esources. Spatially, tasks tend to be offloaded to nearby providers.
owever, if nearby providers are heavily loaded amid intense compu-

ational competition, distant idle providers may be chosen instead. This
emonstrates the strategy’s capability of globally optimizing allocation
ecisions across the UANET topology based on individual provider
oads and link quality between nodes.
(b) Total Task Cost under different Allocation Strategies.

ig. 9(a) compares total task costs under different allocation strategies,
ith up to 24 resource provider UAVs (RPs) and 40 task owner
AVs (TOs). Costs include UANET operation and risk, comparing:
ocal Computing (LC), Random Offloading (RD), Nearest Neighbor
y Position (NN_Pos), Nearest Neighbor by ETX (NN_Etx), and our
roposed algorithm (TCFD). Under LC, TOs perform local computing,
ence cost does not depend on RPs. Costs for NN_Pos and NN_Etx vary
ignificantly with RPs. With fewer RPs, neighbor allocation has higher
osts due to overloading nearest RPs. This improves with more RPs. RD

Computer Networks 251 (2024) 110612

11

R. Xiong et al.

Fig. 5. Proportion of malicious miners over consensus rounds.

Fig. 6. Consensus latency and message count against the variation of UANET size.

Fig. 7. 3D and 2D view of the generated UANET topology and link. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Computer Networks 251 (2024) 110612R. Xiong et al.
Fig. 8. 3D and 2D view of the task offloading results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. (a) Comparison of task costs under different allocation strategies, (b) Average task completion time of TOs in UANET with varying numbers of RPs.
among providers is especially effective for more RPs, lowering costs.
TCFD consistently performs well across RP quantities. The spatial opti-
mization and dynamic load balancing enable efficient global allocation.
In a 24 RP UANET, TCFD reduces TO costs by 48% over LC.

(c) Average Task Completion Time. Fig. 9(b) shows the average
task completion time of TOs versus RPs in the UANET. Completion time
represents overall TO efficiency. With the same RPs, more TOs increase
computational resource demand, intensifying competition. Individual
RPs bear more offloaded tasks, dispersing power across tasks and
raising risks, prompting TOs to favor local computing. This increases
costs and completion times. In contrast, with the same TOs, more RPs
augment total computational resources, encouraging offloading mode
usage, efficiently utilizing provider capacities and reducing duration.
For instance, with 40 TOs and 6 RPs, average time is 217 s. However,
24 RPs drops this to 99 s, a 57% reduction. Essentially, while TO
scalability heightens resource contention, RP scalability alleviates it.
TCFD optimally balances load across ample global resources.

(d) Time Cost and Offloading Rate. Fig. 10 shows the task offload-
ing rate versus different task time cost coefficients 𝜉, representing costs
per unit execution time. Higher coefficients imply stronger willingness
for owners to offload and reduce time, while lower coefficients suggest
the opposite. With the same RPs, larger coefficients lead to higher over-
all offloading. However, with low coefficients, even more RPs barely
increase offloading, because the strategy favors lower local computing
time costs over offloading costs, encouraging local execution. Essen-
tially, the time coefficient allows adjusting the collaborative computing
degree. When minimizing execution time is critical, increasing the
coefficient promotes offloading to utilize ample global resources for
faster parallel execution. But for latency-tolerant applications, local
computing may be preferred, sacrificing time for efficiency. Overall, the
time coefficient provides a tuning knob to achieve the desired tradeoff
based on application requirements. This enables configurability and
12

customization within the UANET.
Fig. 10. Impact of different task time cost coefficients 𝜉 on the task offloading rate in
UANET.

7. Practical evaluation

In this section, we implement 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 in a real scene and evaluate
its performance.

7.1. Experiment settings

As shown in Fig. 11, the system hardware modules mainly consist of
a swarm of 4 small rotary-wing UAVs, each equipped with a Raspberry
Pi board1 as the onboard computing and communication module. The
Raspberry Pi is connected to the UAV’s Pixhawk flight controller via

1 Raspberry Pi: https://www.raspberrypi.org/.

https://www.raspberrypi.org/

Computer Networks 251 (2024) 110612R. Xiong et al.
Fig. 11. Framework of 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 real-world system.
a serial port and controls the UAV flight using the Dronekit SDK.2
The Raspberry Pi is equipped with a Ralink RT5730 wireless adapter
that supports Ad hoc mode and is connected to the Raspberry Pi via
a USB port. When the wireless adapter is set to Ad hoc mode, it can
be used to form a self-organizing network within the UAV swarm, and
then routing protocols are run to provide routing information and link
quality information to the nodes.

The blockchain network is built on the basis of UANET, with the
Raspberry Pis running Ethereum clients to form a private blockchain
network through node discovery. The main workflows such as com-
puting power trading and collaborative computing also run on the
Raspberry Pi. In addition, a HUAWEI ME909S-821 Mini PCIe 4G mod-
ule and antenna are connected to the Raspberry Pi, which connects to
a 4G base station via wvdial to communicate with the ground station.
A laptop is used as the ground station, responsible for controlling the
swarm flight, monitoring the blockchain network, and issuing resource
tokens. After the UAVs take off and run, the UANET can be considered
to enter an autonomous state, and the ground station only acts as
a monitoring node, with its connection to the swarm regarded as a
weak connection. Additionally, considering that the UAVs and ground
station are in their respective intranet environments during the actual
networking process, an additional server with a public IP is required to
act as a network relay.

7.2. Real-world testing and result analysis

Based on the above hardware and software modules, a prototype
system of AerialBC is implemented, and real-world testing is conducted
in this section. In terms of the test workload, the classic Traveling
Salesman Problem (TSP) is used as a task instance, which often appears
in applications such as UAV point-of-interest path planning. Using the
dynamic programming method as the baseline algorithm, two task
loads, TSP-20n-10x and TSP-20n-5x, are constructed, representing con-
tinuous computation of 10 and 5 TSP problems containing 20 path
points, respectively. Assuming that the task UAV’s local computing
power is 10% remaining, tests show that using 10% of the task UAV’s
Raspberry Pi CPU computing power to complete TSP-20n-10x takes
about 290 s, and TSP-20n-5x takes about 145 s, based on which the
task parameters are set.

Part of the contract invocation transaction information in the trans-
action and computing process are given in table form to show the

2 Dronekit SDK: https://dronekit.io/.
13
Table 3
Main node creates pricing allocation contract.

transaction hash 0xbfc330e5330ba3c63dc17e99f1b7f8fdf39d001679005ac0af2
63bc34514e300

from 0xA4F2f09833778518dC6422C69a87fd17970158a0

to PricingAllocationContract.create
0x9bF88fAe8CF8BaB76041c1db6467E7b37b977dD7

input {}

output {}

Table 4
Task node registers information.

transaction hash 0xf67d673d367694bfb284bb51289e0a55f09b1a1d3f9582d8d7
d371b27b44695e

from 0x2A3803A4a03bE2363e632323dC78e18df1467d45

to PricingAllocationContract.taskOwnerRegister
0x9bF88fAe8CF8BaB76041c1db6467E7b37b977dD7

input {"task_s":5,"task_k":8700,"task_t_max":70,"f_local":15,"cost_coeffi
cient":15}

output {}

actual contract invocation process. The main node creates a pricing
allocation contract to open the transaction for the current period, as
shown in Table 3. The TO node invokes the taskOwnerRegister
function of the pricing allocation contract to register task information,
as shown in Table 4. Both 𝑅𝑃 1 and 𝑅𝑃 2 nodes invoke the resour-
ceProviderRegister function of the pricing allocation contract
to register computing power and pricing information, as shown in
Tables 5 and 6. The staking and payment of resource tokens during
the transaction process are shown in Tables 7 and 8.

The statistical results of the actual test are shown in Table 9. For the
task load TSP-20n-5x, where the local mode is expected to take 145 s,
𝑇𝑂1 reduces the actual task time to 21.85 s by purchasing 𝑅𝑃 1’s com-
puting power and performing computational offloading, while paying
12.21 units of resource tokens. For the task load TSP-20n-10x, where
the local mode is expected to take 290 s, 𝑇𝑂1 reduces the actual task
time to 39.33 s by purchasing 𝑅𝑃 1’s computing power and performing
computational offloading, while paying 30.22 units of resource tokens.

As shown in Fig. 12, the comparison of the time cost of the TO
node in local mode and the time cost and payment cost in offload
mode during the actual test. It can be seen that by paying a certain

https://dronekit.io/

Computer Networks 251 (2024) 110612R. Xiong et al.

8

w
P
i
w
s
o
d
s
𝐴
s
c

C

F
d
w
&
r

D

c
i

D

A

o
t
S
C
E

R

Table 5
𝑅𝑃1 registers information.

transaction hash 0x56c6b7534abe3c9e59caecad8dd0f96bc3cdddb481e035f77f9
fbff264ed8b31

from 0xCCd85C96D370B3D1beF1d069a560c0110EC2a577

to PricingAllocationContract.resourceProviderRegister
0x9bF88fAe8CF8BaB76041c1db6467E7b37b977dD7

input {"f_cap":120,"cost_j":1,"p_ini":3,"p_adj":3}

output {}

Table 6
𝑅𝑃2 registers information.

transaction hash 0x3648e18b43407701882bfd126ce8e8bd3bf41b9f93e2fee796
7e69329f327287

from 0x4d54faaB2E1A0910D3b1f8B18aC95731e653CC52

to PricingAllocationContract.resourceProviderRegister
0x9bF88fAe8CF8BaB76041c1db6467E7b37b977dD7

input {"f_cap":120,"cost_j":1,"p_ini":3,"p_adj":3}

output {}

Table 7
Token stake information.

transaction hash 0xf0d491c6814f8e49f15a019ae0a6636151e2ff31b4daa745d63
4ff95541a517a

from 0x2A3803A4a03bE2363e632323dC78e18df1467d45

to ResourceCoinContract.deposit
0xf8e81D47203A594245E36C48e151709F0C19fBe8

input {"_primary":"0xA4F2f09833778518dC6422C69a87fd17970158
a0","_value":"3022"}

output {}

Table 8
Token delivery information.

transaction hash 0xd5ec1010c13fb0a0adf8ee750ead41584c1c647a446f29aa0ba
e8e742d5d1a56

from 0xA4F2f09833778518dC6422C69a87fd17970158a0

to ResourceCoinContract.transferDeposit
0xf8e81D47203A594245E36C48e151709F0C19fBe8

input {"_to":"0xCCd85C96D370B3D1beF1d069a560c0110EC2a577","
_value":"3022"}

output {}

Table 9
Actual test results.

Task workload TSP-20n-5x TSP-20n-10x

Estimated time in local mode ≈145 [s] ≈290 [s]
Actual time in offloading mode ≈21.85 [s] ≈39.33 [s]
Transaction partner 𝑅𝑃 1 𝑅𝑃 1
Payment cost 12.21 [coins] 30.22 [coins]

amount of resource tokens, the TO node can offload the task to the
RP node when its own remaining computing power is insufficient,
greatly reducing the time cost for task completion and improving task
efficiency, with an overall cost lower than the local computing cost.
For the RP node, it obtains resource token incentives by providing
computing power resources, which serves as proof of its participation
in system computing. The tokens are recorded in the distributed ledger
of the UAV blockchain network and can be used to purchase computing
power when the RP node has task demands, effectively balancing the
internal computing power resources and demand distribution of the
UANET and limiting the impact of malicious and selfish nodes on the
system.
14
Fig. 12. Comparison of TO node costs in actual tests.

. Conclusion

In this paper, we propose 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶, a lightweight blockchain frame-
ork for secure UANET collaborative computing. First, an improved
BFT consensus based on trust evaluation deploys a blockchain record-
ng UAV behaviors and collaborations while reasonably assessing trust-
orthiness. Next, a task allocation strategy balancing efficiency and

ecurity is presented. Smart contracts enable a two-stage process where
wners optimally decide and standardly offload tasks. Experiments
emonstrate 𝐴𝑒𝑟𝑖𝑎𝑙𝐵𝐶 efficiently operates within UANET resource con-
traints while promoting secure, efficient UAV collaboration. Overall,
𝑒𝑟𝑖𝑎𝑙𝐵𝐶 provides a decentralized platform leveraging blockchain and

mart contracts to facilitate configurable, trustworthy, and scalable
oordinated aerial computing.

RediT authorship contribution statement

Runqun Xiong: Writing – review & editing, Supervision, Resources,
unding acquisition, Formal analysis. Qing Xiao: Writing – original
raft, Software, Investigation, Formal analysis. Zhoujie Wang: Soft-
are, Methodology, Data curation. Zhuqing Xu: Writing – review
editing, Validation, Project administration. Feng Shan: Writing –

eview & editing, Validation, Formal analysis.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This work is supported by the National Natural Science Foundation
f China under grants 62172091, 62232004, 61602112, and 61632008;
he Jiangsu Provincial Key Laboratory of Network and Information
ecurity, China under grant BM2003201; and the Key Laboratory of
omputer Network and Information Integration of the Ministry of
ducation of China, China under grant 93K-9.

eferences

[1] Ivan Maza, Fernando Caballero, Jesus Capitan, J.R. Martinez-de Dios, Anibal
Ollero, Experimental results in multi-UAV coordination for disaster management
and civil security applications, J. Intell. Robot. Syst. 61 (1-4, SI) (2011) 563–585.

[2] Lav Gupta, Raj Jain, Gabor Vaszkun, Survey of important issues in UAV
communication networks, IEEE Commun. Surv. Tutor. 18 (2) (2016) 1123–1152.

[3] Zhiqing Wei, Mingyue Zhu, Ning Zhang, Lin Wang, Yingying Zou, Zeyang Meng,
Huici Wu, Zhiyong Feng, UAV-assisted data collection for internet of things: A
survey, IEEE Internet Things J. 9 (17) (2022) 15460–15483.

http://refhub.elsevier.com/S1389-1286(24)00444-4/sb1
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb1
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb1
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb1
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb1
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb2
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb2
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb2
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb3

Computer Networks 251 (2024) 110612R. Xiong et al.
[4] Alessio Rugo, Claudio A. Ardagna, Nabil El Ioini, A security review in the
UAVNet era: Threats, countermeasures, and gap analysis, ACM Comput. Surv.
55 (1) (2022) 1–35.

[5] Yuntao Wang, Zhou Su, Qichao Xu, Ruidong Li, Tom H. Luan, Lifesaving with
RescueChain: Energy-efficient and partition-tolerant blockchain based secure
information sharing for UAV-aided disaster rescue, in: 2021 IEEE Conference
on Computer Communications, INFOCOM, 2021, pp. 1–10.

[6] Rooha Masroor, Muhammad Naeem, Waleed Ejaz, Resource management in
UAV-assisted wireless networks: An optimization perspective, Ad Hoc Netw. 121
(2021) 102596.

[7] Quyuan Luo, Tom H. Luan, Weisong Shi, Pingzhi Fan, Deep reinforcement
learning based computation offloading and trajectory planning for multi-UAV
cooperative target search, IEEE J. Sel. Areas Commun. 41 (2) (2023) 504–520.

[8] Kai-Yun Tsao, Thomas Girdler, Vassilios G. Vassilakis, A survey of cyber security
threats and solutions for UAV communications and flying ad-hoc networks, Ad
Hoc Netw. 133 (2022) 102894.

[9] Pavlos Athanasios Apostolopoulos, Georgios Fragkos, Eirini Eleni Tsiropoulou,
Symeon Papavassiliou, Data offloading in UAV-assisted multi-access edge com-
puting systems under resource uncertainty, IEEE Trans. Mob. Comput. 22 (1)
(2023) 175–190.

[10] Haifeng Yu, Ivica Nikolić, Ruomu Hou, Prateek Saxena, OHIE: Blockchain scaling
made simple, in: 2020 IEEE Symposium on Security and Privacy, SP, 2020, pp.
90–105.

[11] Yu Du, Zhe Wang, Jun Li, Long Shi, Dushantha Nalin K. Jayakody, Quan Chen,
Wen Chen, Zhu Han, Blockchain-aided edge computing market: Smart contract
and consensus mechanisms, IEEE Trans. Mob. Comput. 22 (6) (2023) 3193–3208.

[12] Wenyu Li, Chenglin Feng, Lei Zhang, Hao Xu, Bin Cao, Muhammad Ali Imran, A
scalable multi-layer PBFT consensus for blockchain, IEEE Trans. Parallel Distrib.
Syst. 32 (5) (2021) 1146–1160.

[13] Zhenzhen Guo, Gaoli Wang, Yingxin Li, Jianqiang Ni, Guoyan Zhang, Attribute-
based data sharing scheme using blockchain for 6G-enabled VANETs, IEEE Trans.
Mob. Comput. 23 (4) (2024) 3343–3360.

[14] Xin Xie, Cunqing Hua, Jianan Hong, Pengwenlong Gu, Wenchao Xu, AirCon:
Over-the-air consensus for wireless blockchain networks, IEEE Trans. Mob.
Comput. 23 (5) (2024) 4566–4582.

[15] Xiao Chen, Guoliang Xue, Ruozhou Yu, Haiqin Wu, Dawei Wang, A vehicular
trust blockchain framework with scalable Byzantine consensus, IEEE Trans. Mob.
Comput. 23 (5) (2024) 4440–4452.

[16] Zhou Su, Yuntao Wang, Qichao Xu, Ning Zhang, LVBS: Lightweight vehicular
blockchain for secure data sharing in disaster rescue, IEEE Trans. Dependable
Secure Comput. 19 (1) (2022) 19–32.

[17] Mohammed Seid Abegaz, Hayla Nahom Abishu, Yasin Habtamu Yacob,
Tewodros Alemu Ayall, Aiman Erbad, Mohsen Guizani, Blockchain-based re-
source trading in multi-UAV-assisted industrial IoT networks: A multi-agent DRL
approach, IEEE Trans. Netw. Serv. Manag. 20 (1) (2023) 166–181.

[18] Xiaobin Xu, Hui Zhao, Haipeng Yao, Shangguang Wang, A blockchain-enabled
energy-efficient data collection system for UAV-assisted IoT, IEEE Internet Things
J. 8 (4) (2021) 2431–2443.

[19] Rui Xing, Zhou Su, Tom Hao Luan, Qichao Xu, Yuntao Wang, Ruidong Li,
UAVs-aided delay-tolerant blockchain secure offline transactions in post-disaster
vehicular networks, IEEE Trans. Veh. Technol. 71 (11) (2022) 12030–12043.

[20] Shuyun Luo, Hang Li, Zhenyu Wen, Bin Qian, Graham Morgan, Antonella Longo,
Omer Rana, Rajiv Ranjan, Blockchain-based task offloading in drone-aided
mobile edge computing, IEEE Netw. 35 (1) (2021) 124–129.

[21] Abegaz Mohammed Seid, Jianfeng Lu, Hayla Nahom Abishu, Tewodros Alemu
Ayall, Blockchain-enabled task offloading with energy harvesting in multi-UAV-
assisted IoT networks: A multi-agent DRL approach, IEEE J. Sel. Areas Commun.
40 (12) (2022) 3517–3532.

[22] Xiao Tang, Xunqiang Lan, Lixin Li, Yan Zhang, Zhu Han, Incentivizing proof-of-
stake blockchain for secured data collection in UAV-assisted IoT: A multi-agent
reinforcement learning approach, IEEE J. Sel. Areas Commun. 40 (12) (2022)
3470–3484.

[23] Chunpeng Ge, Xinshu Ma, Zhe Liu, A semi-autonomous distributed blockchain-
based framework for UAVs system, J. Syst. Archit. 107 (2020) 101728.

[24] Rajesh Gupta, Anuja Nair, Sudeep Tanwar, Neeraj Kumar, Blockchain-assisted
secure UAV communication in 6G environment: Architecture, opportunities, and
challenges, IET Commun. 15 (10) (2021) 1352–1367.

[25] Pramod Abichandani, Deepan Lobo, Smit Kabrawala, William McIntyre, Secure
communication for multiquadrotor networks using Ethereum blockchain, IEEE
Internet Things J. 8 (3) (2021) 1783–1796.

[26] Keke Gai, Yulu Wu, Liehuang Zhu, Kim-Kwang Raymond Choo, Bin Xiao,
Blockchain-enabled trustworthy group communications in UAV networks, IEEE
Trans. Intell. Transp. Syst. 22 (7) (2021) 4118–4130.

[27] Baichuan Liu, Weikun Zhang, Wuhui Chen, Huawei Huang, Song Guo, Online
computation offloading and traffic routing for UAV swarms in edge-cloud
computing, IEEE Trans. Veh. Technol. 69 (8) (2020) 8777–8791.

[28] Mohamed-Ayoub Messous, Hichem Sedjelmaci, Noureddin Houari, Sidi-
Mohammed Senouci, Computation offloading game for an UAV network in mo-
bile edge computing, in: 2017 IEEE International Conference on Communications,
ICC, 2017, pp. 1–6.
15
[29] Hongyue Kang, Xiaolin Chang, Jelena Mišić, Vojislav B. Mišić, Junchao Fan, Yat-
ing Liu, Cooperative UAV resource allocation and task offloading in hierarchical
aerial computing systems: A MAPPO-based approach, IEEE Internet Things J. 10
(12) (2023) 10497–10509.

[30] Davide Callegaro, Marco Levorato, Optimal computation offloading in edge-
assisted UAV systems, in: 2018 IEEE Global Communications Conference,
GLOBECOM, 2018, pp. 1–6.

[31] Haitao Xu, Wentao Huang, Yunhui Zhou, Dongmei Yang, Ming Li, Zhu Han,
Edge computing resource allocation for unmanned aerial vehicle assisted mobile
network with blockchain applications, IEEE Trans. Wireless Commun. 20 (5)
(2021) 3107–3121.

[32] Zhaolong Ning, Yuxuan Yang, Xiaojie Wang, Lei Guo, Xinbo Gao, Song Guo,
Guoyin Wang, Dynamic computation offloading and server deployment for UAV-
enabled multi-access edge computing, IEEE Trans. Mob. Comput. 22 (5) (2023)
2628–2644.

[33] Anandarup Mukherjee, Sudip Misra, Vadde Santosha Pradeep Chandra, Mo-
hammad S. Obaidat, Resource-optimized multiarmed bandit-based offload path
selection in edge UAV swarms, IEEE Internet Things J. 6 (3) (2019) 4889–4896.

[34] Wanning Liu, Yitao Xu, Nan Qi, Kailing Yao, Yuli Zhang, Wenhui He, Joint
computation offloading and resource allocation in UAV swarms with multi-access
edge computing, in: 2020 International Conference on Wireless Communications
and Signal Processing, WCSP, 2020, pp. 280–285.

[35] Tan Do-Duy, Long D. Nguyen, Trung Q. Duong, Saeed R. Khosravirad, Holger
Claussen, Joint optimisation of real-time deployment and resource allocation for
UAV-aided disaster emergency communications, IEEE J. Sel. Areas Commun. 39
(11) (2021) 3411–3424.

[36] Hui Gao, Jianhao Feng, Yu Xiao, Bo Zhang, Wendong Wang, A UAV-assisted
multi-task allocation method for mobile crowd sensing, IEEE Trans. Mob.
Comput. 22 (7) (2023) 3790–3804.

[37] Sihem Ouahouah, Tarik Taleb, JaeSeung Song, Chafika Benzaid, Efficient offload-
ing mechanism for UAVs-based value added services, in: 2017 IEEE International
Conference on Communications, ICC, 2017, pp. 1–6.

[38] Junqin Huang, Linghe Kong, Guihai Chen, Min-You Wu, Xue Liu, Peng Zeng,
Towards secure industrial IoT: Blockchain system with credit-based consensus
mechanism, IEEE Trans. Ind. Inform. 15 (6) (2019) 3680–3689.

[39] Jiaxin Chen, Qihui Wu, Yuhua Xu, Nan Qi, Xin Guan, Yuli Zhang, Zhen Xue, Joint
task assignment and spectrum allocation in heterogeneous UAV communication
networks: A coalition formation game-theoretic approach, IEEE Trans. Wireless
Commun. 20 (1) (2021) 440–452.

Runqun Xiong received the Ph.D. degree in computer sci-
ence from Southeast University. He was with the European
Organization for Nuclear Research as a Research Associate
for the AMS-02 experiment from 2011 to 2012. He is
currently an associate professor with the School of Computer
Science and Engineering, Southeast University, China, where
he is involved in AMS-02 data processing at the AMS
Science Operations Center. His current research interests
include cloud computing, industrial Internet, and drone-
based wireless communication systems. He is a member of
the ACM, IEEE, and the China Computer Federation.

Qing Xiao received his B.S. degree in Computer Science and
Technology from Shanghai University in 2021. He is now a
master student majoring in software engineering at South-
east University. His research interests include Blockchain,
Edge Computing, and Internet of Things.

Zhoujie Wang received his B.S. degree in computer science
from Nanjing University of Posts and Telecommunications,
Nanjing, China, and received the M.S. degree in cyber
science from Southeast University, Nanjing, China. He
is currently a Software Engineer at Tencent Technology
(Shanghai) Co., Ltd.

http://refhub.elsevier.com/S1389-1286(24)00444-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb6
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb6
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb6
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb6
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb6
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb8
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb8
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb8
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb8
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb8
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb9
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb9
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb9
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb9
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb9
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb9
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb9
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb10
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb10
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb10
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb10
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb10
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb12
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb12
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb12
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb12
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb12
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb13
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb13
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb13
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb13
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb13
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb15
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb15
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb15
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb15
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb15
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb16
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb16
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb16
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb16
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb16
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb17
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb17
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb17
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb17
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb17
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb17
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb17
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb18
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb18
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb18
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb18
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb18
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb19
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb19
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb19
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb19
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb19
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb20
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb20
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb20
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb20
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb20
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb21
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb21
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb21
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb21
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb21
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb21
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb21
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb23
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb23
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb23
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb24
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb24
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb24
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb24
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb24
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb25
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb25
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb25
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb25
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb25
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb26
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb26
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb26
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb26
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb26
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb27
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb27
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb27
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb27
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb27
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb28
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb28
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb28
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb28
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb28
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb28
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb28
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb29
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb29
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb29
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb29
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb29
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb29
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb29
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb30
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb30
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb30
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb30
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb30
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb31
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb31
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb31
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb31
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb31
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb31
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb31
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb32
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb32
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb32
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb32
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb32
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb32
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb32
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb33
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb33
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb33
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb33
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb33
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb34
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb34
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb34
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb34
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb34
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb34
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb34
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb35
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb35
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb35
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb35
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb35
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb35
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb35
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb36
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb36
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb36
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb36
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb36
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb37
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb37
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb37
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb37
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb37
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb38
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb38
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb38
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb38
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb38
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb39
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb39
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb39
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb39
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb39
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb39
http://refhub.elsevier.com/S1389-1286(24)00444-4/sb39

Computer Networks 251 (2024) 110612R. Xiong et al.
Zhuqing Xu received his B.S. degree from HangZhou DianZi
University, China, and the M.S degree from the College of
Software Engineering, Southeast University, China. He re-
ceived the Ph.D. degree in computer science from Southeast
University. His research interests include the Internet of
Things, Cyber–Physical Systems, and Wireless Networks and
Sensors.
16
Feng Shan received a Ph.D. degree in computer science
from Southeast University, China, in 2015. He was a visiting
student with the School of Computing and Engineering,
University of Missouri-Kansas City, Kansas City, MO, USA,
from 2010 to 2012. He is currently an Associate Professor
with the School of Computer Science and Engineering,
Southeast University. His research interests include the
areas of Internet of Things, Wireless Networks, Swarm
Intelligence, and Algorithm Design and Analysis.

	Leveraging lightweight blockchain for secure collaborative computing in UAV Ad-Hoc Networks
	Introduction
	Related Work
	System Model
	Overview of AerialBC
	Network Model
	Computation Model
	Threat Model

	Improved Trust-Enhanced PBFT Consensus
	Trust Evaluation
	Consensus Process
	Proposal Voting Scheme

	Smart Contract-Based Task Allocation Strategy
	Task Cost
	Local Computing Mode
	Offloading Computing Mode
	Total Cost Function

	Task Allocation Strategy
	Two-Stage Collaborative Computing
	Smart Contract Design
	Task Allocation Contract
	Task Offloading Contract
	Accusation Contract

	Performance Evaluation
	Security Analysis
	Security Analysis Framework
	Security Analysis Results

	Lightweight Blockchain Verification
	Simulation Setup
	Results and Analysis

	Task Allocation Strategy Verification
	Simulation Setup
	Results and Analysis

	Practical Evaluation
	Experiment Settings
	Real-world Testing and Result Analysis

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

