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Summary

With their high flexibility and versatility, unmanned aerial vehicles (UAVs) have maneu-

vered their way into many applications. Thanks to their ability to plan and coordinate,

multiple UAVs complete tasks more effectively, which boosts their popularity in bat-

tlefield surveys, formation performances, and targeted searches. However, the risk of

security threats also rises alongside their popularity. The UAV ad hoc network (UANET)

has endeavored to contend with such risks through the optimized link state rout-

ing (OLSR) protocol. To test the security and strength of this effort, we present a sky

black hole attack (SBHA) algorithm for OLSR, which is undetectable, based on the

UANET’s multi-hop routing and the OLSR’s known topology. This algorithm obtains

the network’s maximum profits by approaching and then replacing the calculated

topology center and traffic center in UANET. Because of the ever-changing topol-

ogy, SBHA aims at UANET’s single central node that cannot be detected in advance.

This attack is difficult to detect by UANET and therefore difficult to defend. The sim-

ulation results show that SBHA can cause greater damage to UANET compared to

a traditional black hole attack, and ordinary defense algorithms cannot reduce the

negative impact of SBHA on UANET. In addition, SBHA also gains UANET control,

and leads to drastic changes in UAVs’ movement trajectory, which has more intuitive

effects.
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1 INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs) have gradually integrated into all quarters of society and become indispensable civilian and military

equipment. With this technology’s development, the tasks that UAVs need to complete are becoming increasingly complex. Organizing multiple UAVs

to complete the mission collaboratively is an important task of UAV applications. The key to realizing multiple UAVs’ collaboration technology lies in

the communication between UAVs. Therefore, the basis of this technology is the communication relayed via the UAV ad hoc network (UANET).

UANET is a model proposed for the characteristics of the communication topology of multiple UAVs’ collaboration. In UANET, the communica-

tions between UAVs do not completely rely on basic communication facilities such as ground control stations or satellites. Instead, UAVs are used as

network nodes. Every node can exchange data such as a perception situation, health status, and intelligence collection to each other, and automati-

cally connect to establish a wireless mobile network. Each node in the network functions as a transceiver and a router. UAV is not only a node in the

network, but also acts as a relay node in the ad hoc network with a routing function, forwarding data to nodes that are farther away via multi-hop

transmission.

The UAV network, constructed in the form of an ad hoc network, needs the routing protocol’s support. The optimized link state routing (OLSR)

protocol1 is a table-driven routing protocol widely used in UANET.2 In UANET, based on OLSR, the node maintains the routing table, and thus
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network latency is low. Additionally, the node regularly updates the routing table to reduce the impact of topology fluctuations on network con-

nectivity. Compared to the classic LSR protocol, OLSR adds its main idea—a multipoint relay (MPR) mechanism—for optimization. When LSR uses

a flood-propagation technology, the node that receives any message must transmit and forward the data packet to all its neighbors to ensure that

every node in the network understands the network topology. In OLSR, every node sending topology control (TC) messages and packets must be

forwarded, depending on the MPR set selected, which reduces network flooding and also makes the MPR nodes’ status in the network more impor-

tant. So, the local node can grasp the remote topology and discriminate the maximum traffic node to achieve the best profits in OLSR.3 It then

becomes difficult to defend against an attack in UANET during a period of high mobility. The UANET based on the table-driven routing protocol has

the advantages of low data packet delay, and the error of the real-time accuracy of topology information can be ignored. Therefore, although the

routing protocol is more suitable for UANETs, Corresponding improvements are needed, and it is still feasible to choose this protocol as the routing

protocol for the UANET.4

Keeping this in mind, here we propose a sky black hole attack (SBHA) algorithm for UANET based on OLSR, which is undetectable for the existing

defense measures, depending on the multi-hop routing of UANET and the known topology of OLSR. We also optimize the attack algorithm according

to the UAV characteristics, and finally achieve the goal of gaining network control. In SBHA, the malicious node calculates the topology and traffic

central nodes in UANET through the routing table, moves to the position where the maximum traffic can pass through the network, and uses the

real MPR identity as a neighbor to absorb, modify, and discard packets. In this way, the malicious node can change the UAVs’ formation and trajectory

(which causes greater damage to the network) and finally gain network control.

The following are the main contributions of this article:

1. SBHA uses OLSR’s MPR mechanism to attack without sending forged messages to deceive the network. Instead, it absorbs packets by

occupying the network’s central node position. The black hole attack prevention and defense measures cannot deter SBHA’s impact

on UANET.

2. SBHA uses UANET’s multi-hop routing and the known topology of OLSR to calculate the network’s topological center and traffic center with

the largest number of packets currently passing through, and set it as the attack’s focus. Compared to traditional black hole attacks that do not

perform calculations and attacks on the central node, SBHA has a wider attack range, so it can cause greater damage to UANET and profits from

the attack more effectively.

3. SBHA has researched the UAVs’ movement information, making this algorithm more suitable for UANET with high mobility. The experimental

results indicate that SBHA can change the movement trajectory and working status of UAVs at the same time. In addition, SBHA also obtains

UANET control, allowing it to view the effects of attacks more intuitively.

4. The optimized realization of the black hole attack by this algorithm has produced obvious and effective attack effects on UANET, which are

applicable to and scalable for other mobile ad hoc networks.

The remainder of this article is organized as follows. Section 2 discusses work related to the attack and defense for a mobile ad hoc network

(MANET). Section 3 presents our SBHA algorithm. Section 4 discusses the experimental results based on NS-3. Finally, Section 5 summarizes our

work and indicates future research directions.

2 RELATED WORK

Secure routing plays a pivotal role in reliable network performance. Most conventional secure-routing protocols5-7 assume that there is a central-

ized or distributed third party in the network to implement multiple encryption algorithms and ensure routing security just as Zhao et al.8 apply

lightweight two-factor authentication to ensure the security of the Internet of Things. However, these assumptions are invalid for MANET. Because

of the network’s lack of fixed infrastructure, open transmission media, and dynamic topology, MANET has the most unfavorable networking envi-

ronment and lacks dependence on prerequisites. In addition, on resource-constrained mobile nodes, cryptographic operations such as computing

digital signatures and verification will consume too much of the mobile node’s resources. The most important problem in these routing protocols is

that they cannot recognize certain passive attacks, such as black hole attacks.

In Deng et al.,9 the authors conducted thorough research on black hole attacks for the ad hoc on-demand distance vector (AODV) protocol.10

In AODV, the malicious node replies to every routing request it receives, instead of only replying to the route whose destination node is reachable.

Then, the malicious node discards all the data packets passing through it and does not help to forward according to the protocol’s requirements.

This creates a black hole in the network, which is easily ported into OLSR by declaring a forged Hello message about false neighbor information to

increase its chances of being selected as an MPRAODV.11

Another form of black hole attack is the tc-hello-black-hole.12 By forging Hello and TC messages at the same time, an attacker can ensure

that packets will flow through it. However, there is no guarantee that the attack will proceed effectively, because the packet may actually choose a

different route.



XIONG ET AL. 3 of 17

Raffo et al.13 proposed a mechanism to improve OLSR security for the aforementioned attacks. In this solution, every node signs its Hello and

TC messages. Then these signatures are used by others to prove their Hello and TC messages. This scheme can prevent the malicious devices from

claiming virtual connections with known nodes and spoofing links.

However, when the attacker is a natural candidate for transmitting packets or the attacker is nominated as the MPR of other nodes, the attack

will fail, because the user can still discard packets passing through it. In addition, this scheme’s mechanism also consumes a lot in signing messages.

As the network’s scale increases, the accumulation factor also will increase.

Schweitzer et al.14 proposed a trust-degree mechanism algorithm to minimize gray hole denial-of-service (DoS) attacks. By checking whether

the Hello message packet’s content (sent by each node in the network) contradicts the known topology message, the trusted node is divided from the

suspicion. We use five different threat models to evaluate the technology, which gives us a better understanding of the attack surface and preventive

measures. The final results show that this algorithm greatly reduces the gray hole attacks’ efficiency.

Similarly, Cai et al.15 proposed an Evolutionary Self-Cooperative Trust (ESCT) scheme to prevent black hole attacks in MANET, which mimics

the human cognitive process and relies on trust-level information to prevent various routing interruption attacks. In this scheme, mobile nodes will

exchange trust information and analyze the received trust information based on their own cognitive judgment. In the end, each node will dynamically

develop its cognitive capabilities to exclude malicious nodes.

Algorithms of this kind are highly effective for traditional black hole attacks’ defense, because none of the black hole attacks mentioned

can identify the network center. Instead, they create a virtual one. A physical network center—assuming it is discovered by an attacker—remains

unprotected.16

Schweitzer et al.17 proposed a method to find the nodes that must be passed through to forward some packets in OLSR-based MANET if the

nodes exist, with a linear cost. After locating a node that can get the most revenue, the prevention methods can increase the nodes’ protection

measures to prevent attackers from attacking and hijacking the nodes with greatest profits. However, this method can only find bottleneck nodes

in the local path, and does not find the node with the greatest profits for the entire network. Additionally, this method has limitations for networks

with ever-changing topology.

For the SBHA algorithm proposed in this article—in which malicious nodes did not try to send false Hello message to deceive the network;

instead, they calculated an approach for the largest data traffic in real time—the aforementioned defense scheme is not effective.

Existing studies have performed substantial work on black hole attacks and gray hole attacks deployed on MANET, but they have not combined

specific scenarios such as UANET with attack algorithms for vulnerability research.18 And the most extensive defense scheme currently is to judge

whether the node is trustworthy based on the degree of trust. This kind of scheme has no practical defense function for SBHA.

3 SKY BLACK HOLE ATTACK

In a classic black hole attack, the attacker should claim that all nodes in the topology table are his neighbors, to cheat an entire network’s nodes by

broadcasting a forged Hello message. While SBHA does not need to send forged Hello messages, it does capture the information of all nodes directly

by replacing the central node. This section divides the main concept of SBHA into two parts: capturing packets and tampering with packets. Capturing

packets’ module can be divided into calculating, approaching, and replacing the central node. Figure 1 shows the SBHA algorithm’s framework.

F I G U R E 1 Sky black hole attack (SBHA) algorithm framework. OLSR stands for optimized link state routing protocol and UAV stands for
unmanned area vehicle
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3.1 Capturing the packets module

If an attacker wants to capture packets as much as possible and does not adopt easy-to-detect methods such as broadcasting a forged Hello mes-

sage, then first malicious node should be the center of network and become a “hub” that can help all nodes truly transmit packets. However, the

malicious node only can obtain the routing table through OLSR, and cannot know the specific traffic center. Therefore, we use it to calculate the

current network topology’s central and traffic center nodes that pass the most packets currently through the routing table and multi-hop routing

information. Then, according to the calculation results and type of data packet flow, the attacker approaches the node that can obtain the most prof-

its. Finally, the UAV feature is used to destroy the node’s connectivity, occupy its position as the network’s main hub, and become the UANET’s new

central node.

Using this scheme, most existing detection methods can be avoided, so that the malicious node can obtain and exploit the real MPR iden-

tity, thereby further realizing the black hole’s function, changing the UAV’s movement trajectory, and seizing network control. Figure 2 shows the

flowchart of the capturing packets’ module.

3.1.1 Calculating the topology and traffic centers

The topology center is the node at the network’s center, which theoretically can intercept most packets. The topology center calculated by each

node at the same time should be the same. According to the network topology information, the network topology center can be calculated by taking

the sum of the distances from each node in the network to the node as a measurement standard.

The resources owned by the malicious node include the topology and routing tables. Because of the topology table’s real-time transformation,

the topology may be duplicated or missing. Thus, the breadth-first search (BFS) algorithm and judgment of special circumstances are used, to ensure

consistency among the network’s topology center results calculated by each node. Algorithm 1 is used to find the sum of distances from one node

to other nodes.

F I G U R E 2 Flowchart of the capturing packets module
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Algorithm 1. Sum-of-distances

Input: Ipv4Address of a node (ip)

Output: sum of distances from this node to others (sum)

function SUM-OF-DISTANCES(ip)

if ip == mainAddress then

return OwnSum

end if

if ip is in topology table then

BFS(ip, sum, topology)

else

if ip is in neighbor table then

sum ← sum + own_sum + routing.size() − neighbor.size()
else

sum ← INT_MAX

end if

end if

return sum

end function

The traffic center is the node that can actually intercept the most packets combined with an application layer. The calculation results of the cen-

ter node will change depending on the time and location. By using multi-hop routing information, the node that passes the most packets is calculated

from all the nodes that each packet passes through—from the source node to the destination node.

To calculate the traffic center, when a malicious node sends or receives a packet that needs to be processed and forwarded, it checks the packet’s

source and destination nodes, and finds and records the path the packet passes. Similarly, because of incomplete information in the topology table,

all the links in the network will not be recorded completely. A malicious node cannot calculate the traffic center via topology and routing tables

directly, but it needs to use the depth-first search (DFS) algorithm and consider special circumstances. Algorithm 2 is used to get the packet passes’

nodes, and nodes that pass through them can be figured out by Algorithm 3.

3.1.2 Calculating the topology and traffic centers

In UANET, the protocol will spread its own GPS information through Hello messages. Thus, the attacker can approach a certain node via the protocol.

Through the NS-3 simulation experiment, it is concluded that the calculated traffic center has certain limitations at the edge position. When the

direction is near the topology center, the prediction is more accurate. For an instance with stable packets flowing, the topology center can intercept

more packets than the traffic center calculated by most nodes.

Algorithm 2. Nodes-of-packet-passes

Input: a packet from the route (packet)

Output: the nodes of the packet passes (nodes)

function NODES-OF-PACKET-PASSES(packet)

source ← packet.getSource()
dest ← packet.getDestination()
nodes ← nodes + {mainAddress}
if source! = mainAddress then

NODES-OF-ADDRESS(source, nodes)

end if

if dest! = mainAddress then

NODES-OF-ADDRESS(dest, nodes)

end if

return nodes

end function



6 of 17 XIONG ET AL.

Algorithm 3. Nodes-of-address

Input: an address (addr)

Output: the nodes that pass through (nodes)

function NODES-OF-ADDRESS(addr)

nodes ← nodes + {addr}
if addr is in neighbor table then

return nodes

end if

if addr is in tow-hop neighbor table then

nodes ← nodes + {neighborAddr}
else

DFS(addr, nodes, topology)

end if

return nodes

end function

By comparing the topology center and traffic center calculated with different applications intercepting packets, we divide the nodes close to

the center into three situations:

1. For applications where the packets’ flow is average and stable, it can be assumed that the topology center is the traffic center, and more packets

can be intercepted by directly attacking the topology center.

2. For applications with irregular packets’ flow, the attacker can approach the topology center first, and then calculate the packets’ flow near the

topology center to find the most suitable location to intercept the data packet.

3. For high-mobility applications, it is necessary to constantly adjust the computing topology center and traffic center nodes to intercept more

packets.

3.1.3 Replacing the central node

UAVs are flexible, but they also have limited energy consumption and storage resources.19 The OLSR message-flooding mechanism causes the nodes

in UANET to occupy some storage space. Therefore, we consider broadcasting a large number of Hello message in different IPs through a single

hop to occupy the resources of the central node and its neighbors as Huo et al.20 working for social Internet of Things. In this way, the Hello mes-

sages, TC messages, and packets sent by the central node’s real neighbors are all overwhelmed by the false Hello messages from the malicious node,

thereby destroying the two-way link between the central node and its neighbors. When a malicious node becomes the MPR of its neighbor node, it

successfully occupies the central node position.

After replacing the traffic center node, packets can be captured at the largest traffic’s location on the entire network. This attack method uses

the UAVs’ characteristics and the message-flooding mechanism of OLSR, which is extremely difficult to defend in an ad hoc network with average

functions of all nodes. In addition, in an NS-3 simulator, it takes an average of 23 s to replace a node, and takes 40–60 s to build a complete routing

table. This method is quick and effective.

3.2 Tampering with the packets module

In SBHA, after the malicious node becomes the new central node in the network, to make UANET’s attack effect more obvious, the attacker tampers

wit and drops packets selectively according to the analysis of the movement trajectory of each drone instead of dropping all the packets. Figure 3

shows the flowchart for tampering with the packets module.

3.2.1 UAV motion trajectory analysis

Multiple UAVs’ movement can be divided into two states: one where the UAVs maintain the current formation to fly at the same speed, and another

that changes the current formation to a new formation. For these two states, the ground control station will send commands to its directly connected

UAVs, and these UAVs will load the command into a packet and broadcast it to all the network nodes.
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F I G U R E 3 Flowchart of tampering with the packets module

When multiple UAVs need to maintain the formation, the first line of “command” is WILL_KEEP, which means that the formation will not change,

and the second line indicates the entire formation’s direction and speed. Figure 4 shows the maintaining formation state diagram. The UAVs con-

nected to the ground station directly loads the command into the packet and broadcasts it, and the nodes receiving the packet maintain the speed

in the corresponding direction according to the command. They don’t change speed until receiving the next command.

When multiple UAVs change their formation, the first command line is WILL_CHANGE, which means the formation is about to change. The

following lines are the directions and distances calculated by the ground station that each node needs to follow. Each line has an IP address repre-

senting a UAV node, with the direction and distance the node needs to move. Figure 5 shows the state diagram of the transforming formation. When

UAVs connected to the ground station receives the command, the station checks its routing table according to the IP address. If the node is reach-

able, it writes WILL_CHANGE along with the distance direction into the packet’s commend field and sends it to the corresponding node. The node

receiving the packet will move according to the direction in the command until it reaches the destination position. Then it will stop moving and reply

to the source node, indicating that it has reached its destination. After receiving the next command, it will change its trajectory.

3.2.2 Selective packet tampering

After the malicious node intercepts the packet in UANET, it parses the packet and focuses on the commend field. When the commend field is

empty—which means that the packet does not carry information about the UAVs’ motion trajectory—the attacker will drop it.
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F I G U R E 4 Maintaining formation state diagram

F I G U R E 5 Transforming formation state diagram

When the commend field is not empty, if the first command line is WILL_KEEP, it means that the network needs to maintain the formation

movement. The malicious node can tamper with the direction and speed of the second command line, or change the first line to WILL_CHANGE. So,

the attacker can change UANET’s formation.

If the first command line is WILL_CHANGE; it means that the network needs to modify the formation. The malicious node can calculate through

the routing table to tamper with the direction and distance, so that the network is modified to an unexpected formation. The attacker can also change

the first line to WILL_KEEP, letting the ground station fail to modify the formation.

In SBHA, malicious nodes selectively tamper with or drop packets by analyzing each UAV’s movement trajectory to achieve the goal of obtaining

network control finally.
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4 EXPERIMENTAL SIMULATION

Because the network topology is infinite, the algorithm must be verified through simulation.21 In this section, the operation of various simulation

experiments is described to prove SBHA’s feasibility under a detection method and the ultimate effect of obtaining network control rights for

UANET.

In this article, we used NS-3.2922 to conduct simulation experiments on Ubuntu. Using C++ programming, the network simulator’s node infor-

mation was set to simulate ordinary and malicious UAV nodes. The routing protocol used the built-in OLSR module, and corresponding modules in

the third section were added into it. The main difference between a malicious node and a normal node was the m-malicious parameter, and the mali-

cious node ran after the normal node when the simulator is running. In the simulation, the UAVs’ speed was 1.5–2 m/s, and transmission range was

about 250 m. We also use 802.11 standards to establish network channels in NS-3, with the simulating UAV nodes installed by energy consumption

and motion modules.

4.1 Comparative experiment of capturing packets

Figure 6 shows the UANET’s architecture for the black hole attack experiment. The UAV nodes ran the built-in OLSR module in NS-3 at the net-

work layer, simulated the energy consumption process of each UAV through the energy module, simulated UAVs flying in a certain pattern by setting

the mobility module information, and forwarded packages through a server-client module. In the “capturing packets” experiment, malicious nodes

intercepted the packets sent by ordinary nodes and dropped the packets directly. This section will calculate the packet loss rate and network through-

put for the following five situations, respectively, to show SBHA’s advantages of comparing it with the classic black hole attack algorithm in the

packet-capturing stage versus SBHA’s feasibility under a detection method.

NON_BLACKHOLE: Here, there is no black hole attack in the network. The malicious node does the same operation as the normal node. Each

node in the network randomly sends packets to other nodes to check the packet loss rate, network throughput, packets delay and network jitter

under normal conditions.

BLACKHOLE: In this instance, the malicious node performs a classic black hole attack by adding a hop of unreachable nodes to the Hello mes-

sages’ neighbor information, capturing packets in the network as much as possible, and then dropping it. Check the packet loss rate, throughput,

delay and jitter of the network with a classic black hole attack.

F I G U R E 6 Black hole attack experiment’s architecture
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DETECT_BLACKHOLE: In this case, malicious nodes still perform classic black hole attacks. Simultaneously, common nodes are added with a

trustworthiness detection module in OLSR, which checks whether the source node has added one-hop unreachable nodes to a neighboring table

for each Hello message received. If a node is suspect, the possibility of the node being selected as the MPR is reduced. Check the packet loss rate,

throughput, packets delay and network jitter with a classic black hole attack and prevention method.

SBHA: Here, the malicious node executes an SBHA algorithm proposed in this article, captures and drops packets by calculating and replacing

the central node, and checks the packet loss rate, throughput, packets delay and network jitter with SBHA.

DETECT_SBHA: In this scenario, the malicious node still executes the SBHA algorithm proposed in this article. Simultaneously, the common node

is added with a trustworthiness detection module in OLSR. When the prevention method has been used, check the packet loss rate, throughput,

packets delay and network jitter after using the SBHA algorithm.

According to the five aforementioned situations, Figures 7–10 show the experimental results simulated on the NS-3 simulator.

4.2 Comparative experiment of tampering with packets

In the SBHA algorithm’s tampered packets module, the malicious node classifies the captured packets according to the commend field in packets

representing the UAV’s movement information. As mentioned previously, there are three types of packets: the first type contains no UAV motion

F I G U R E 7 Network packet loss rate under different conditions

F I G U R E 8 Throughput under different conditions
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F I G U R E 9 Delay under different conditions

F I G U R E 10 Jitter under different conditions

information; the second type indicates the network needs to maintain the formation movement; and the third type indicates the network needs to

change (or transform) the formation.

According to the aforementioned instructions, this section will conduct comparative experiments on the following six situations, and check the

trajectory changes of each UAV:

ONLY_KEEP: Without malicious nodes, the ground station sends a commend containing WILL_KEEP.

ONLY_CHANGE: Without malicious nodes, the ground station sends a commend containing WILL_CHANGE.

KEEP_TO_KEEP: The ground station sends a commend containing WILL_KEEP, and the malicious node tampered with the direction and speed of

nodes’ movement in the packet received.

KEEP_TO_CHANGE: The ground station sends a commend instruction containing WILL_KEEP. The malicious node tampered with

WILL_CHANGE, and it randomly modified the distance that the node should move.

CHANGE_TO_CHANGE: The ground station sends the commend instruction with WILL_CHANGE. The malicious node first records the packet’s

commend information, judges the new formation based on multiple packets’ information, and then tampers with the packet’s distance information

and forwards the packet according to the destination address. The network is modified to an unexpected formation.
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CHANGE_TO_KEEP: The ground station sends a commend command containing WILL_CHANGE. The malicious node tampered with WILL_KEEP,

and it randomly modified the direction and speed of nodes’ movement.

In the packet-tampering experiment in this section, first set UANET’s initial formation through NS-3’s built-in mobility module. All nodes will

maintain the formation movement or modify it to a new formation based on the commend field in the packets. Taking a network with 25 nodes as

an example, the UAV network’s initial formation is a 5*5 matrix queue. In situation ONLY_KEEP, Figure 11 shows the UAV network trajectory after

receiving the following commend field (see Table 1).

In the situation ONLY_CHANGE, after receiving commend field as Table 2, Figure 12 shows the UAV network trajectory.

If the malicious node receives the commend field with the same content in ONLY_KEEP, indicating that the formation is maintained, then accord-

ing to KEEP_TO_KEEP, it will tamper with the direction and speed of the nodes’ movement in the packet. Figure 13 compares the UAV network

trajectories between the cases ONLY_KEEP and KEEP_TO_KEEP.

According to KEEP_TO_CHANGE, it will change the WILL_KEEP in the commend field to WILL_CHANGE, and randomly modifies the distance the

node should move. Figure 14 compares the UAV network trajectories between cases ONLY_KEEP and KEEP_TO_CHANGE.

If the malicious node receives the commend field with the same content in ONLY_CHANGE, indicating that the formation is maintained, according

to CHANGE_TO_CHANGE, it will tamper with the packet’s distance information. Figure 15 compares the UAV network trajectory between cases

ONLY_CHANGE and CHANGE_TO_CHANGE.

According to CHANGE_TO_KEEP, it will change the WILL_CHANGE in the commend field to WILL_KEEP, and randomly modify the direction and

speed of the nodes’ movement. Figure 16 compares the UAV network trajectories between cases ONLY_CHANGE and CHANGE_TO_KEEP.

It is obvious that the malicious node can disrupt UANET’s formation and trajectory, and it changes the expected command from the ground

control station to the UAV queue, thereby gaining control of the network.

4.3 Experimental results and analysis

In the SBHA algorithm’s simulation experiment for the packet-capture module, after simulating five different network situations and checking the

packet loss rate and network throughput, the results show that the SBHA algorithm captures up to 44% of all packets and offers remarkable network

throughput reduction.

When no malicious node attacks the network, the packet loss rate is the lowest. At this time, packet loss may be caused by node movement or

transmission to unreachable nodes; when malicious nodes perform a traditional black hole attack, the packet loss rate is a 10% higher-than-normal

F I G U R E 11 UAV network trajectory diagram in the ONLY_KEEP situation

TA B L E 1 The content of the

commend field with WILL_KEEP

WILL_KEEP

1.8 0.6
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TA B L E 2 Content of the commend field
with WILL_CHANGE

WILL_CHANGE

10.1.2.1 104.6 76.8

10.1.2.2 108.6 84.9

10.1.2.3 116.7 87.4

10.1.2.4 119.3 83.5

10.1.2.5 104.2 64.4

⋮ ⋮ ⋮

10.1.2.24 125.9 52.8

10.1.2.25 94.9 43.3

F I G U R E 12 UAV network trajectory diagram in the ONLY_CHANGE situation

F I G U R E 13 Comparing the UAV network trajectories of ONLY_KEEP and KEEP_TO_KEEP
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F I G U R E 14 Comparing the UAV network trajectories of ONLY_KEEP and KEEP_TO_CHANGE

F I G U R E 15 Comparing the UAV network trajectories of ONLY_CHANGE and CHANGE_TO_CHANGE

F I G U R E 16 Comparing the UAV network trajectories of ONLY_CHANGE and CHANGE_TO_KEEP
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situation. However, after running the prevention program, the packet loss rate almost returned to normal. When a malicious node executes the

SBHA algorithm, the packet loss rate increases by 10%–20% compared to normal conditions, and as the network scale increases, the packet loss

rate increases more. In addition, after running the prevention program, the packet loss rate shows almost no change. Delay and jitter of the network

do not have more changes but can also show the negative impact of UANET by SBHA.

When malicious nodes perform traditional black hole attacks, the throughput is slightly reduced, and after running the trust mechanism scheme,

the network throughput increases year-on-year. However, when the malicious node executes the SBHA algorithm, the network throughput can be

reduced by up to 90%, and the trust mechanism scheme is still unable to pick up.

In the simulation experiment of tampering with the SBHA algorithm’s packets module, it is divided into six situations to show the SBHA

algorithm’s influence on the UANET’s trajectory. In the ONLY_KEEP situation, the UAV network maintains the grid formation to fly normally, and

in ONLY_CHANGE, the UAV network transforms the grid formation into a circle. Meanwhile, KEEP_TO_KEEP and KEEP_TO_CHANGE are based on

ONLY_KEEP to make malicious nodes run the SBHA algorithm to tamper with the packets module, respectively. They represent changing the UAVs’

direction of movement and state to change the formation. Finally, CHANGE_TO_CHANGE and CHANGE_TO_KEEP make the malicious node run the

SBHA algorithm on the basis of ONLY_CHANGE to tamper with the packets module, respectively. They represent changing UAV’s distance direction

and state to maintain the formation. Figures 10–13 show that the UAVs’ movement trajectory has been changed, making the network team form an

unpredictable formation except for malicious nodes.

4.4 The real world UAVs test

We use F450 hexarotor UAV to build the system. The UAVs’ experimental function module diagram is shown in Figure 17. The UAVs and the ground

station are located in the ad hoc network through the network communication module. After the module receives the ground station instruction

F I G U R E 17 UAVs’ experimental function module diagram
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(A) (B)

(C) (D)

F I G U R E 18 The flight change diagram of the test UAVs. (A) Initial hover position. (B) Malicious code running. (C) The formation of UAVs began
to change. (D) The distance between UAVs began to increase

in the Raspberry Pi of the UAV, it communicates with the flight control board through the MAVLink protocol to complete the corresponding flight

control operations. The system used dronekit software to the MAVLink protocol module, the UAV behavior control module, and the UAV status

monitoring module is the flight control module, which is connected to the flight control board hardware management in the Raspberry Pi to control

the mobility of UAVs. The ground control module monitors the status information of the UAV group through the feedback of the commands from

the UAVs in the network. After completing the networking and connectivity of the UANET, malicious nodes join the network to implement malicious

attack modules to verify the SBHA algorithm.

After completing the UAV networking, this article tested SBHA algorithm on multiple UAVs. Figure 18 shows the flight change diagram of the

test UAVs.

5 CONCLUSION

In this article, we compared the importance of topology and traffic centers in forwarding packets. According to the central nodes’ two types

of characteristics, we proposed a black hole attack algorithm (called SBHA) for UANET based on OLSR. This algorithm is undetectable for

existing defense measures, depending on UANET’s multi-hop routing and OLSR’s known topology. We also optimize the algorithm according

to UAV’s characteristics, and finally achieve the goal of gaining network control. The simulation results show that SBHA can cause greater

damage to UANET compared to a traditional black hole attack, and ordinary defense algorithms cannot reduce SBHA’s negative impact on

UANET. In future work, we will focus on optimizing SBHA’s performance in terms of node energy consumption and the delay of attacking the

target node.
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