

The 20th IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS 2023)

Cooperative and Autonomous Mapping for Heterogeneous NAVs

Ruiwen Xu, Yongtao Ou, Hanjie Yu, Ziyi Zhang, Feng Shan, Weiwei Wu, Junzhou Luo Southeast University, Nanjing, China

東南大学

01 INTRODUCTION

02 TINYOCTOMAP

03 AUTONOMOUS EXPLORATION ALGORITHM

04 EDGE-ASSISTED OFFLOADING

05 IMPLEMENTATION

06 CONCLUSION

Introduction

Classic Mapping

Expensive equipment and human intervention

Large scenes and extensive point cloud

Autonomous Mapping for NAV

Introduction

Autonomous Mapping for Nano-UAVs(NAVs) refers to the process of mapping without external control signal input, the NAV utilizes only the data from its own sensors to to navigate and complete the mission.

advantages

Easy Deployment
High Agility
High Mobility

Advantages and Disadvantages of NAV

Advantages

- Small size
- inexpensive
- adaptability to confined and complex environments
- Low risk of accidents

Disadvantages

- Limited sensor performance
- Low computing and storage capacity
- Limited battery life

Challenge of mapping for NAV

Challenge 1 : Lack of appropriate map model

It is too memory intensive for NAV.

Challenge of mapping for NAV

Challenge 2 : Lack of suitable navigation strategies

Doesn't take into account **memory pressure** and **map model features** such as octree pruning operations.

Challenge of mapping for NAV

Challenge 3 : Lack of a cooperative framework for heterogeneous NAVs

Multi-NAVs collaboration

TINYOCTOMAP

TinyOctoMap is proposed in order to achieve efficient resource utilization in indoor NAVs navigation scenarios.

TinyOctoMap

The design of the tree nodes is optimized as follows:

- Subnode index children
- Node occupation level logOdds
- Use a bitfield to store members

In comparison to the conventional OctoMap map model, the proposed model exhibits a significant reduction of **85.94%** in memory usage while maintaining the same number of voxel blocks.

AUTONOMOUS EXPLORATION ALGORITHM

Design of Active Exploration

Based on Next Best View (NBV) theory

- Selected a candidate set of next waypoints, Q, from the current location.
- An evaluation function is established to evaluate the candidate waypoints based on the map coverage, navigation cost, state uncertainty, and other metrics.
- The optimal waypoint for the next moment at the current position is selected based on the greedy strategy

Design of Active Exploration

EDGE-ASSISTED OFFLOADING

Three kinds of packets for the cooperative autonomous mapping in the heterogeneous NAV:

Message Type	Data Content
Mapping Request	Variable-length structure array
Exploration Request	current coordinate, attitude, and range
Exploration Response	next coordinate

1. Merge duplicate rays to accelerate building map

2. Adjust edge-NAV positions dynamically using the artificial potential field (APF) method

Implementation

Parameters of NAV

	parameters		
platform	Crazyflie 2.1		
Weigh	27g		
Maximum load	15g		
battery capacity	250mAh		
size	92×92×29mm		
MCU	Cortex-M4 (168MHz,192Kb SRAM,1Mb flash)		

Experimental Deck

Deck		LiDAR UAV Edge UAV
Multi-ranger Deck	measures the distance to objects in different directions.	Multi-ranger Deck
Flow-Deck	gives the Crazyflie the ability to detect its motions in any direction.	Flow-deck Lighthouse AI-deck
Lighthouse Deck	uses the base stations to achieve high precision positioning.	
AI-deck	Make Crazyflie edge computing capable.	
Crazyradio PA	It is a long range open USB radio dongle.	Crazyradio PA Lighthouse Station

the inter-NAV and inter-board communication architecture:

Experimental map

Real map

Simulation map

Singal-NAV Simulation Result(4cm accuracy)

The effect of NAV mapping at different moments and the final flight path.

Comparison of different exploration strategies(2cm accuracy) 豪东东学

Strategies	time (s)					
	65% exploration		75% exploration		85%exploration	
	Time(s)	%	Time(s)	%	Time(s)	%
Adaptive	633.5	100	1174	100	1354	100
Only Prune	526.5	82.11	∞	∞	∞	×
Only Info	1382	218.19	2135	181.82	×	×

Single-NAV Real Result(4cm accuracy)

Real experimental results:

Due to NAV flight safety considerations, the NAV flight altitude needs to be at least 30 centimeters above the ground

Triple-NAVs Simulation Result(4cm accuracy) @ 東南大学

The effect of triple-NAVs mapping at different moments and the final Tricolor map.

Comparison of Single-NAV and Triple-NAVs(4cm accuracy)

Results comparing single-NAV and triple-NAVs :

Triple-NAVs Real Result

Dynamically adjusting edge NAV using APF method results on packet loss rate:

Three-NAVs Real Result

Real experimental results:

Gray squares represent known areas.

Conclusion

Conclusion

In this paper, we propose a cooperative NAV system using heterogeneous NAVs for autonomous mapping in unknown and confined environments. The main tasks are as follows:

- > We propose an improved map model: TinyOctomap.
- We propose the active exploration strategy, which improves memory usage efficiency while ensuring exploration efficiency.
- ➤ We design an efficient computing offloading strategy.
- We have conducted a large number of simulations and real experiments to verify the robustness and effectiveness of the system.

Thanks for your listening!

Yongtao Ou(yongtao@seu.edu.cn)

Feng Shan(shanfeng@seu.edu.cn)

Southeast University, China