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Abstract—Nano unmanned aerial vehicles (NAVs) have been
increasingly used for mapping due to their advantages in
weight and size, such as search, rescue and reconnaissance
in confined areas. However, because the resources carried by
NAVs are extremely limited, it is a challenge to achieve efficient
autonomous mapping in 3D space. To address this challenge,
this paper proposes a new autonomous mapping model and
system architecture with heterogeneous NAVs. Firstly, this paper
introduces an enhanced OctoMap-based map model designed for
resource-constrained NAVs. In comparison to the conventional
OctoMap map model, the proposed model exhibits a significant
reduction of 85.94% in memory usage while maintaining the
same number of voxel blocks. In addition, We propose an active
exploration algorithm based on Next Best View (NBV) theory,
which can achieve agile and efficient autonomous mapping.
Furthermore, a merging rays strategy and a dynamic adjustment
of Edge-NAV positions strategy are proposed to improve the
communication quality between heterogeneous NAVs. The map
model and exploration algorithms are deployed on real-world
NAVs, and the correctness and effectiveness of the proposed
algorithm are validated through extensive simulations and real-
world experiments, accomplishing more than the exploration
completion rate of 80% with less than memory pool usage of
60%.

Index Terms—Cooperative NAVs, Autonomous Mapping, Com-
puting Offloading, OctoMap

I. INTRODUCTION

Three-Dimensional (3D) Mapping by Unmanned Aerial
Vehicle (UAV) is a technique that is used to create useful
3D maps of hard-to-reach areas. Due to the diverse range of
applications scenarios, it attracts a lot attentions recently [1]–
[7]. Autonomous 3D mapping has been widely employed in
open areas to do topographic mapping, geological surveys, and
disaster response planning [8]–[11].

In compact and obstacle-rich environments, 3D mapping is
also needed, for example, rescue teams need to map a culvert
or a collapsed building immediately to make a rescue plan,
managers need to periodically map a factory workshop to
ensure moving parts of the machines are in a good position,
commanders need to map a hostile build quickly to support
fast military action. There is currently very few research [12]
partly because flying in such an environment is challenging.

Nano unmanned aerial vehicles (NAVs) are UAVs with
diameters of only a few centimeters and weighing only a few
dozen grams. NAV is suitable to carry out 3D mapping tasks
in the compact space or the obstacle-rich environment due to
their size and weight advantages [2]. However, it has a tight

Fig. 1: Cooperatively and autonomously mapping for hetero-
geneous NAVs

resource budget, NAV 3D mapping faces three limitations:
low computation capability, limited onboard memory, and
low payload capacity [2], [13]. Hence, it is important to
deploy multiple NAVs that can cooperate with each other to
complete the 3D mapping task. Fig. 1 shows the system model
of the heterogeneous NAVs cooperating with each other to
autonomously mapping in this paper.

Previous research works on UAV 3D mapping generally
study active exploration [14]–[16], octree optimization [17],
[18], image identification [19], deep learning [20]. However,
we summarize that there are still some important challenges
for NAV 3D mapping.

Challenge 1: although the OctoMap [21] saves memory
in mapping, however it is still too memory-intense to directly
deploy onboard on NAVs. OctoMap is an efficient probabilistic
mapping framework, it is a significant improvement over the
raster map. In recent years, OctoMap has undergone numer-
ous improvements in terms of memory and computational
cost [22], [23]. The data structure used by Octomap to store
the nodes is octree, requiring an amount of memory space.
So, directly deploying the octree data structure is unsuitable
for more resource-constrained NAVs.

Challenge 2: current active exploration strategies for NAVs
focus more on information profit and exploration efficiency
but pay less attention to the impact of memory constraints
on map storage. The octree requires modification to ensure
quick collection of environmental information in unfamiliar
3D environments and adapt to resource-constrained NAVs.
However, a dilemma arises where, on the one hand, exploring
unfamiliar areas quickly requires the use of more nodes, lead-
ing to memory overruns in resource-constrained NAVs. On the
other hand, if NAV memory is aggressively managed, it may



result in overly conservative exploration, limiting coverage to
a local area. Therefore, finding a trade-off between the stricter
memory usage management and the faster updates of octree
maps is a crucial question that warrants careful consideration.

Challenge 3: it is hard to coordinate multiple heteroge-
neous NAVs to cooperatively explore their surroundings and
construct a combined 3D maps. It is important to note that
the energy sources of NAVs are limited, making them less
possible to explore for long periods of time and cover a large
area. Thus, cooperative efforts among NAVs are necessary
to construct 3D maps of larger areas. Moreover, the payload
capacity of a NAV is normally small, heterogeneous NAVs co-
operation must be considered. Tasks should be shared among
the heterogeneous NAVs to reduce the load of a single NAV
and prevent rapid energy consumption. To achieve this, not
only an effective communication among NAVs is essential,
but also a unified cooperative framework for heterogeneous
NAV teams is crucial.

To cope with the above three challenges, improvements
are made to the classic OctoMap; a new active exploration
algorithm is proposed; a generic edge-assisted computational
offloading framework is designed for heterogeneous NAVs co-
operation. Additionally, real-world experiments are conducted
to validate the proposed ideas and algorithms. The main
contributions of this paper can be summarized as follows:

• We formulate a novel problem, that is mapping a compact
and obstacle-rich environment with a team of resource-
constrained heterogeneous NAVs.

• Based on the existing method OctoMap, we improve and
proposed the TinyOctoMap, which focuses on a much
more memory-restricted situation such as in the NAV.
In TinyOctoMap, we optimize the data structure and
memory allocation in performing the 3D mapping.

• We design an active exploration algorithm for au-
tonomous mapping. We consider both information profit
and memory-reducing profit, taking advantage of the
feature that octrees could be pruned. Our algorithm allows
NAVs to explore for a longer time.

• We propose a heterogeneous NAVs framework for coop-
erative mapping. The framework allows NAV to offload
mapping tasks to the other NAV. We propose strategies
to enhance the communication throughput. We implement
cross-platform and cross-protocol communication within
the framework for more efficient collaboration.

• We implement and deploy the autonomous mapping
system on Crazyflie 2.1. Extensive simulation and real-
world experiments are conducted to verify the proposed
algorithms and framework mentioned in the paper.

The rest of the paper is organized as follows. Section II
introduces the basic knowledge of UAV 3D mapping and
communication. Section III and IV present the detailed design
of the autonomous navigation and edge-assisted offloading
framework. Section V gives the implementation details. Ex-
periment results are discussed in Section VI. Section VII
concludes this paper.

II. PRELIMINARY

Octree is a tree-like data structure used to describe 3D
space. It divides the space into a series of voxels of different
sizes, each of which is called a node. Each node has eight
child nodes, which represent eight sub-regions. The nodes at
different levels of the octree occupy the same memory. An
example of OctoTree physical and memory structure is given
in Fig. 2.

…

(a) (b)

Fig. 2: OctoTree physical and memory structure

Each node has two known states: occupied and free. The
node state is determined by the occupancy probability, which
is in the logarithmic form to describe the relative likelihood
of occupancy. The occupation probability of any leaf node mi

within the octree is usually updated by the RayCast method
using sensing data obtained by Light Detection and Ranging
(LiDAR). To simplify the representation of occupancy prob-
ability, instead of storing the probability values directly, the
nodes of the octree store the log probability values to describe
the confidence states of the nodes while avoiding the loss of
accuracy caused by too small or too large probability values.
This gives the updated equation for the occupation probability:

l(mi | z(1:t)) = l(mi | z(1:t−1)) + l(mi | zt) (1)

where l(mi | zt) represents the amount of change in the
logarithmic occupation modification of the nodes associated
with each LiDAR sensing data. Specifically, the value of
l(mi | zt) is determined by whether the laser can cross the
node or not. When all sub-nodes are in the same state, they
can be pruned to reduce memory usage. This feature is quite
suitable for resource-constrained NAVs.

III. DESIGN OF AUTONOMOUS EXPLORATION ALGORITHM

Since the memory is highly constrained in NAVs, this
chapter first optimizes the classic OctoMap model to compress
information storage, then the classic active exploration strategy
is improved to according to memory usage.

A. Design of memory-adapted map model: TinyOctoMap

The classic open-source implementation of the OctoMap
has been iterating for years. However, these improvements
have also led to an ever-expanding memory occupation of the
basic data structure. For resource-sensitive NAVs, the memory
occupation of the basic data structure should be minimized.

This paper therefore propose TinyOctoMap, and the com-
parison with classical open-source implementation of the
OctoMap are shown in Fig.3. As the most important in the
octree structure, the memory occupied per unit element of



the tree node directly affects the resource utilization of the
whole map. In order to achieve efficient resource utilization in
indoor Nano-UAVs navigation scenarios, TinyOctoMap makes
the following optimizations in the design of tree nodes:

1) Subnode index children: Since TinyOctoMap uses the
memory pool to manage all tree nodes, and the sibling
nodes are stored in consecutive nodes, the child node
location only keeps the array index of the first child
node in the memory pool.

2) Node occupation level logOdds: OctoMap model for
node occupation state evaluation, usually using log-
odds method, and floating-point value is used. Instead,
the unsigned integer stored occupancy level is used in
TinyOctoMap.

3) Use a bitfield to store members. Considering the range
of child node indexes and occupation level, the members
can be stored in a 16-bit unsigned integer using a struc-
tured bit field to further compress the space occupied by
a single node

Fig. 3: Memory usage analysis of TinyOctoMap and OctoMap

As a result, TinyOctoMap significantly reducing the mem-
ory occupation of tree nodes, makes it possible to deploy the
map model on resource-constrained nano UAVs. Limited by
the number of bits of Subnode indexes specified in bit fields in
tree nodes, TinyOctoMap can record a maximum set of 4096
tree nodes, occupying about 65KB of memory space. If the
resolution of the octree is set to 4cm, TinyOctoMap can record
about 51.2m2 of obstacle surface area, which seems enough to
cope with the demand of indoor simple autonomous navigation
scenarios, and also meet the memory limit of the experimental
platform used in this paper.

B. Design of Active Exploration

UAV autonomous exploration algorithms are usually based
on Next Best View (NBV) theory. Using strategies such as
boundary point extraction, a candidate set of next waypoints

is selected from the current location. Then, an evaluation
function is established to evaluate the candidate waypoints
based on the map coverage, navigation cost, state uncertainty,
and other metrics. Finally, the optimal waypoint for the next
moment at the current position is selected based on the greedy
strategy, so as to continuously explore the map space and
maximize the benefits of exploration.

From the above steps, we can concluded that design a
good profit evaluation function is critical for designing a
good active exploration strategy. Our core idea of designing
the profit evaluation function for memory-constrained nano
UAVs is that let this evaluation function be aware of the
memory usage. More specifically, a good profit evaluation
function should balance between exploration efficiency and
memory constraint. This subsection therefore proposes 1) the
information profit related to exploration efficiency, 2) octree
pruning profit related to memory constraint, and 3) how the
two profit functions combined to improve active exploration
strategy.

1) Information Profit: Information profit refers to the
amount of information that the UAV updates map informa-
tion by scanning unknown areas with LiDAR sensor after
reaching a candidate waypoint q(q ∈ Q). How to evaluate
the information profit of a candidate waypoint without first
reaching it? To solve this problem, we integrate the OctoMap
and LiDAR detection characteristics, estimate the volume of
the unknown area that the UAV can detect after reaching a
candidate waypoint by building a probabilistic model, and then
evaluate the information profit.

Fig. 4: Candidates evaluation

Fig. 4 gives the possible voxels passed by the UAV in the
detection direction L at the candidate waypoint q. For any
candidate waypoint, q within the candidate waypoints set Q,
the information profit that can be obtained in direction L is as
follows:

Winfo (q, L) =

m∑
i=1

(ωinfo (i)), q ∈ Q, (2)

where m denotes the number of voxels that may be explored
in the detection direction L, and ωinfo (i) denotes the infor-
mation profit from the ith voxel in the detection direction L.



In order to represent the information profit more precisely
for unknown voxel i, we define two important concepts: (a)
the occupation probability and (b) the reachability probability
of the unknown voxel i.

The occupation probability refers to the probability that the
voxel is occupied. Considering the occupation status of the
sibling nodes of voxel i and the global information together,
the occupation probability of unknown voxel i is calculated as
follows:

pocc (i) = pglabal + (nocc − nfree) ∗ pinc,
pglabal ∈ [0, 1], pinc ∈ [0, 1], pocc ∈ [0, 1],

(3)

where pglabal is a constant for the global occupation probabil-
ity, nocc is the number of nodes known to be in the occupied
state among the sibling nodes of voxel i, nfree is the number
of nodes known to be free among the sibling nodes of voxel
i, and pinc is the parameter for the influence of each sibling
node on the state of voxel i, which is also a constant.

The reachability probability indicates the probability that
the voxel can be detected from a candidate waypoint. It is
important to note that the laser cannot penetrate the occupied
block. Combining the LIDAR properties and the occupation
probability defined earlier, the reachability probability of the
unknown voxel i can be defined as:

parr (i) =

i−1∑
j=1

(1− pocc(j)) . (4)

Based on the probabilistic model defined above, we can define
the information profit from the ith voxel:

ωinfo(i) = parr (i) ∗ cinfo, (5)

where cinfo is the unit size of the information profit.
2) Octree Pruning Profit: An important feature of OctoMap

is the ability to perform pruning operations, thus saving mem-
ory space while ensuring accuracy. Therefore, in this paper,
for the memory-constrained nano-UAVs, whether a candidate
waypoint can trigger the pruning of the Octree is taken as one
of the factors to measure its profit. For the candidate waypoint
q, its pruning profit is calculated as:

Wprune (q, L) =

m∑
i=1

(parr(i) ∗ pprune(i) ∗ cprune) (6)

where parr(i) is the reachable probability of voxel i, calculated
as 4,pprune(j) denotes the triggered pruning probability of
voxel j, and cprune denotes the unit pruning profit.

In the trigger analysis of the pruning operation, it can be
learned that the octree pruning operation will be triggered
and only when the states of all sibling nodes are consistent.
Therefore, the prune trigger probability can be expressed as:

pprune(i) =


pocc(i)

8−nocc , nocc ̸= 0, nfree = 0,

(1− pocc(i))
8−nfree , nocc = 0, nfree ̸= 0,

pocc(i)
8 + (1− pocc(i))

8, nfree = 0, nocc = 0,

0, else

(7)

where pocc(i) is the occupation probability of voxel i, calcu-
lated as 3, nocc is the number of nodes known to be in the
occupied state among the sibling nodes of voxel i, nfree is the
number of nodes known to be free among the sibling nodes
of voxel i.

3) Combined Profit Functions and Active Exploration Strat-
egy: Considering the information profit and pruning profit
together, the total profit function of the candidate waypoints
in direction L is obtained in this paper as:

Wsum(q, L) = Winfo(q, L) +Wprune(q, L)

In order to better consider the importance of each profit at
different stages of exploration, the profit function is further
optimized in this paper as follows:

W̃sum(q, L) = α ∗Winfo(q, L) + β ∗Wprune(q, L)

where β is the weight factor of pruning profit, which is equal
to the ratio of the current memory pool allocated space size to
the total memory pool size, i.e., the memory pool utilization
rate. And α is the weight factor of information profit, i.e.,
α = 1 - β. The memory pool utilization reflects the current
memory pool usage. The introduction of dynamic weights not
only ensures the efficiency of exploration in the early stage of
exploration but also triggers pruning to prevent memory pool
overflow when the memory pool utilization increases as much
as possible, which guarantees the security of the memory pool.

Count the profit of each detection direction for individual
candidate waypoints, and sum them up to compare the total
profit of each waypoint, We define the final decision function
as:

argmax
q∈Q

(
∑
L

(W̃sum(q, L)))

With the next step waypoint being continuously selected
based on the above equation, the NAV can complete the explo-
ration of the space and maximize the benefits of exploration.

IV. DESIGN OF EDGE-ASSISTED OFFLOADING
FRAMEWORK

In this paper, we introduce two types of NAVs in the hetero-
geneous system: Lidar-NAV and Edge-NAV. The Lidar-NAV
is responsible for using LiDAR to perceive the surrounding
environment, while the Edge-NAV uses the environmental
information from multiple Lidar-NAVs to build the map.

A. System overview
Generally, we can expand the capabilities of the NAV

by installing different expansion boards. However, due to
reasons such as payload, energy efficiency, and communication
conflicts, the choice of expansion boards is mutually exclusive.
Therefore, this paper installs the lidar-ranging expansion board
for the Lidar-NAV and installs the expansion board that can
provide ultra-low power edge computing capabilities for Edge-
NAV. The Lidar-NAV will continue to send request packets to
the Edge-NAV. For the request packets that need a response,
the Edge-NAV will return the corresponding response packet.

For the cooperative autonomous mapping in the heteroge-
neous NAV, we design three kinds of packets shown in Table. I.



TABLE I: Cooperative autonomous packet payload

Message Type Data Content
Mapping Request Variable-length structure array

Exploration Request current coordinate, attitude, and range
Exploration Response next coordinate

1) Mapping Request Packet: The mapping request from
multiple Lidar-NAVs will be sent to the Edge-NAV, and the
Edge-NAV will use the multi-source sensor information to
construct the TinyOctoMap designed in Section. III-A for
autonomous mapping. The payload of the mapping request
packet is an array of coordinate pairs, containing the start and
end coordinates of the LiDAR ray, and the times of this ray
can represent.

2) Exploration Request Packet: In order to achieve active
exploration, the Lidar-NAV needs to select its next move-
ment location based on the surrounding environment. The
exploration request packet provides the necessary information
for the NBV-based active exploration algorithm designed in
Section III-B. The exploration request needs a response, as
the Lidar-NAV requires a returned next coordinate to move.

3) Exploration Response Packet: After receiving a request
packet for exploration, the Edge-NAV calculates the next
position to which the Lidar-NAV should move. As a result,
the data field of the exploration response packet only contains
a single coordinate.

B. Merge Rays and Accelerate Building Map

The time required for updating the OctoMap increases with
the depth of the tree. In the context of autonomous mapping,
not only the octree nodes corresponding to obstacles need to
be updated but also using the Bresenham line algorithm to
traverse and update every node that the LiDAR passes through
between its starting and ending points. Compared to the
frequency of sensor data acquisition, updating the OctoMap
always takes more time, and classic methods have a lot of
redundancy in updating the map.

Ray End

Ray Start

Free Voxel

Occupied Voxel

(a) (b) (c)

Fig. 5: Redundant computation while updating OctoMap

Fig. 5 illustrates the redundant computation while updating
OctoMap. Fig. 5(a) and Fig. 5(b) show that when the NAV
is stationary or moves insignificantly, the endpoints of several
consecutive LiDAR rays correspond to the same node in the
OctoMap, and the nodes traversed by the Bresenham line
algorithm are also the same. Using classic methods, the LiDAR
rays need to be sent independently, and the OctoMap updating

program needs to recursively traverse the same nodes and
change the occupancy probability of each node.

Fig. 5(c) shows the proposed improvement strategy, where
the Edge-NAV combines multiple mergeable LiDAR rays,
and the batch updating of octree nodes is performed by the
Edge-NAV based on the number of merges. This method
not only reduces the number of mapping requests sent but
also accelerates the map updating speed of the Edge-NAV
without compromising accuracy. The merging process involves
selecting a representative ray and adding a counter to record
the number it represents.

Therefore, this paper references the Super Ray [24] and
proposes a linear time complexity ray merging algorithm to
compare whether two LiDAR rays update the same node in
the map. The Super Ray algorithm needs to split the LiDAR
ray, not suitable for heterogeneous multi-NAV since it requires
transmitting more additional data.

Our algorithm first checks if the starting and ending points
of the two rays are the same. If they are not the same, the
algorithm returns False. Then, the algorithm calculates the path
of each ray using the Bresenham algorithm. If the number of
nodes in the paths of the two rays is different, the algorithm
returns False. Finally, the algorithm compares each node in the
paths of the two rays. If there is any mismatch, the algorithm
returns False. If all nodes match, the algorithm updates the
count of the representative ray and returns True. The time
complexity of the algorithm is O(N), where N is the number
of nodes in the paths of the two rays.

C. Adjust Edge-NAV Positions Dynamically

The communication of NAVs is constrained by their weak
communication module, and the packet loss rate of wireless
communication is affected more significantly by the commu-
nication distance. As the position of Lidar-NAV constantly
changes during autonomous mapping, the communication
quality between Lidar-NAV and Edge-NAV also varies. Un-
stable communication channels can cause short-term delays or
packet loss. Therefore, it is necessary to dynamically adjust
the position of the Edge-NAV to reduce the overall packet
loss rate and improve the system’s communication quality. The
goal is to optimize the position of the Edge-NAV to maximize
network coverage and communication quality.

The artificial potential field (APF) method is applied in this
paper to determine the positions of Edge-NAV. The Lidar-
NAV are regarded as repulsive forces to balance the distance
between Edge-NAV and each Lidar-NAV. Meanwhile, the
Lidar-NAVs with high packet loss rates are used as attractive
forces, so that the edge Edge-NAV can provide better services
for Lidar-NAVs with poor communication quality. The opti-
mization goal of this paper is to reduce the packet loss rate of
the offloading uplink. To calculate the repulsive and attractive
forces, the position and packet loss rate of Lidar-NAVs are
required. The necessary data can be obtained by using the
current position of the NAV and the sequence number in the
mapping request packet. This further verifies the rationality of
the designed packet payload in this paper.



Let X denote the position of the Edge-NAV at time t, Xi

denote the position of the i-th laser Lidar-NAV, and Li denote
the corresponding packet loss rate between the Edge-NAV
and the i-th laser rangefinder Lidar-NAV. The corresponding
repulsive potential function can be calculated as:

Urep (X) =

{
1
2Krep

(
1

ρ(X,Xl)
− 1

ρ0

)2

, ρ (X,Xl) ≤ ρ0

0, ρ (X,Xi) > ρ0
(8)

In the equation, Krep is the repulsion field coefficient, which
is used to adjust the strength of repulsion. ρ0 represents the
maximum range of the repulsion field, and ρ(X,Xi) represents
the distance between the two NAVs. The direction of repulsion
is opposite to the direction from X to Xi.

Frep(X) = −∇ (Urep(X)) (9)

Similarly, the calculation of the attraction field function is
as follows:

Uatt(X) =
1

2
Katt (X −Xl)

2 (10)

Where Katt is the attraction field coefficient, which is used
to adjust the strength of attraction. The calculation of the
attraction force is as follows:

Fatt(X) = −∇ (Uatt(X)) (11)

The resultant force acting on the Edge-NAV is as follows:

F (X) =

N∑
i=1

F l
att(X) + F l

rep (X) (12)

Update the next position X
′

of the Edge-NAV:

X
′
= X + F (X) (13)

V. IMPLEMENTATION

We implement the proposed cooperative and autonomous
mapping system on Crazyflies, an STM32-driven NAV with a
tiny STM32 MCU, inertial measurement unit, 2.4GHz com-
munication module, and reserved pins for mounting expansion
boards. We install a LiDAR expansion board (Multi-Ranger
Deck) with four single-line LiDARs on Lidar-NAV and an
edge computing expansion board (AI-Deck) with a GAP8 chip
on the Edge-NAV to enhance the NAV’s capabilities.

For data acquisition, we use HTC Vive Lighthouse, an
optical indoor positioning system, to acquire absolute NAV
position information with millimeter-level accuracy. We use
the IMU on the NAV to acquire the attitude information of the
NAV in real-time and use the LiDAR to collect the distance
between the obstacles in the environment and the NAVs.

For data transmission, we use the 2.4GHz module on board
the NAV for P2P communication between different NAVs.
Inside the Edge-NAV, we use CPX protocol based on UART
communication between STM32 and GAP8 chips.

Fig. 6: Experiment devices

Fig. 7: Communication link

VI. EXPERIMENT

This section presents the simulation experiments and real
experimental results of autonomous exploration and map
building in unknown narrow environments by NAV equipped
with adaptive exploration strategies in single- and multi-NAVs
experiments.

A. Single-NAV Experiments

1) Single-NAV Simulation Results: To verify the efficiency
of the exploration algorithm described in Section III and to
analyze the memory pool usage, this section first designs a set
of simulation experiments. The experiments are implemented
on a Python platform using a Mac Air computer equipped
with an Apple M2 chip and 16GB of memory size. In the
simulations, the UAV is defined as a dynamic model with
current coordinates p(x,y,z) and a fixed velocity of 0.16m/s.
We build an equal-scale global simulation map model with
reference to the real experimental environment, which is
shown in Fig.8.

(a) Real map (b) Simulation map model

Fig. 8: Experimental map model

Due to the limited performance and load of the NAV, we
use a Lidar model with 6 channels and a range of 3m for
distance sensing.



First, we demonstrate the ability of the NAV equipped
with the proposed exploration strategy to explore and build
maps independently and record the exploration completion and
memory pool utilization in real-time. The exploration comple-
tion refers to the ratio of the explored area volume to the total
area volume, while the memory pool usage refers to the ratio
of the number of used nodes to the memory pool capacity.
The results of the Single-NAV simulation experiments are as
follows:

(a) time = 300s (b) time = 650s (c) time = 1000s

(d) flight path

Fig. 9: Single-NAV simulation map building results with 4cm
accuracy

In Fig. 9, the effect of UAV map building with 4cm accuracy
is shown. The mapping result verify the correctness of the
UAV model and Lidar model, as well as to validate the
effectiveness of the exploration strategy proposed in this paper

Fig. 10: Memory pool usage and exploration completeness
with 2cm accuracy under different strategies

In order to more comprehensively evaluate the effective-
ness of the exploration strategies proposed in this paper, We
compare the active exploration strategy that only considers
information profit, the strategy that only considers pruning
profit and the strategy proposed in this paper. Fig. 10 shows
the comparison of map exploration completion and memory
pool usage for these strategies with 2cm accuracy, where
the map exploration completion refers to the ratio of the
explored volume of the map to the total volume of the

map and the memory pool usage refers to the ratio of the
number of used nodes to the memory pool capacity. The
results show that the active exploration strategy considering
only information profit has high exploration efficiency but the
memory pool is depleted prematurely, resulting in the lowest
final exploration completeness of only 70.01%. Although the
active exploration strategy considering only pruning profit
secures the memory pool as much as possible, it severely
sacrifices the exploration efficiency. Only 77.67% exploration
completeness is achieved after long enough exploration. The
adaptive exploration strategy proposed in this paper balances
exploration efficiency and memory pool usage and achieves
a final detection completion rate of 88.7%. Compared with
the classic active exploration strategy that only considers
information profit, the final detection rate is improved by
26.70%.

TABLE II: Time to reach 65%, 75%, and 85% exploration
completeness

Strategies 65% exploration 75% exploration 85% exploration
time(s) % time(s) % time(s) %

Adaptive 633.5 100 1174 100 1354 100
Only Info 526.5 83.11 ∞ ∞ ∞ ∞
Only Prune 1382 218.19 2135 181.82 ∞ ∞

In a comprehensive analysis of exploration completion, only
the strategy proposed in this paper achieves 85% exploration
completion; the time required to achieve 75% exploration
completion is 54.17% less than that of the exploration strategy
considering only pruning profit; the time required to achieve
65% exploration completion is only 20.32% more than that
of the classic active exploration strategy considering only
information profit. Taken together, the strategy proposed in
this paper shows significant advantages for the task of active
exploration and map building in a small environment with
memory-constrained NAVs.

2) Single-NAV real experiments: In order to verify the
effectiveness and robustness of our proposed active exploration
strategy in a real environment, we conducted real flight exper-
iments based on the Crazyflie platform. In order to prevent
the NAV from crashing due to the strong influence of ground
airflow, we set the bottom height to 25cm. The results of the
singal-NAV real experiment are shown in Fig. 11.

(a) time = 175s (b) flight path

Fig. 11: Single-NAV real map building results

Fig. 11a depicts the map created by a single UAV after
175 seconds of flight, revealing that the map’s outline has
essentially completed the scanning process, with a map ex-
ploration completion rate of 82.28% and memory pool usage



of 59.53% at this point. Fig. 11b shows the real flight path
of the NAV. Through real-world experiments on the Crazyflie
platform, we confirm that our proposed active exploration
strategy can cope with a variety of errors, such as localization
errors and ranging errors, in a real environment and still
complete the map construction task effectively. This further
demonstrates the robustness and practicality of our proposed
active exploration strategy.

B. Multi-NAVs Experiments

1) Multi-NAVs Simulation Results: In order to further verify
the effectiveness of the adaptive exploration strategy proposed
in this paper in multi-machine exploration and the synergy of
multi-machine cooperative map building, we conducted multi-
NAVs simulation experiments. Based on the map building

(a) time = 100s (b) time = 200s

(c) time = 400s (d) Tricolor map

Fig. 12: Multi-NAVs map building results

effect shown in Fig. 12, we verify the effectiveness of the
adaptive exploration strategy proposed in this paper in a multi-
NAVs environment. The voxels in different colors in Fig.12d
indicate that different UAVs are responsible for the update,
further demonstrating the collaborative map building effect of
multiple UAVs Fig. 13a compares the exploration completion

(a) Exploration completeness in
the same time

(b) Exploration completeness in
the same number of explorations

Fig. 13: Single NAV and multi-NAVs exploration completion

for single NAV and multiple NAVs at the same time. The
data shows that when the exploration completion of the multi-
NAVs reaches 90%, the completion of the single-NAV is
only 37.26%, indicating that the exploration efficiency of the
multi-NAVs is 2.42 times higher than that of the single-NAV.

Fig. 13b compares the exploration completion of single NAV
and multiple NAVs for the same number of explorations. The
data shows that when the exploration completion reached 90%,
the cumulative time spent by the multi-NAVs was 364s, while
the time spent by the single-NAV was 757.75s, indicating that
the exploration efficiency of the multi-NAVs was 2.0817 times
higher than that of the single-NAV.

In summary, multi-NAVs exploration has obvious advan-
tages in accelerating map building, which can greatly improve
exploration efficiency and shorten exploration time.

(a) Packet loss rate varies with
distance (b) Dynamic position

(c) Packet loss rate varies with
position

(d) MergeNum changes with the
sequence number

Fig. 14: Communication optimization strategy verification

2) Multi-NAVs real experiments: We conduct experiments
to verify the effectiveness of the proposed strategies in Sec-
tion IV. Fig. 14b shows the adaptive position based on the APF
method. Fig 14c shows the packet loss in this process. Fig 14d
shows the effectiveness of the strategy to merge similar rays,
we reduce many packets that need to be sent and speed up the
octree updating.

The results of the Multi-NAVs real experiment are shown in
Fig. 15 The blank voxels in Fig.15a indicate the vacant area.

(a) time = 30s (b) Tricolor map

Fig. 15: Multi-NAVs real map building results

The results demonstrate the higher efficiency of multi-machine
exploration and verify the stability of the proposed unloading
strategy and heterogeneous system in this paper.



VII. CONCLUSION

In this paper, we propose a cooperative NAV system us-
ing heterogeneous NAVs for autonomous map building in
unknown and confined environments. The system uses the
TinyOctoMap model and the adaptive active exploration strat-
egy proposed in this paper, which improves memory usage
efficiency while ensuring exploration efficiency. At the same
time, the system designs an efficient computing offloading
strategy to offload the computing of resource-constrained NAV
within the cluster. The proposed system is evaluated through
a large number of simulations and real-world experiments,
which proves the effectiveness and robustness of the system.
The system has been proven to realize NAV heterogeneous
collaboration to explore complex and narrow environments and
build maps.
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