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Energy-Constrained UAV Flight Scheduling for IoT
Data Collection with 60 GHz Communication

Wenjia Wu, Shengyu Sun, Feng Shan, Ming Yang, and Junzhou Luo

Abstract—In recent years, the data from Internet of Things
(IoT) devices is growing at a rapid pace, and the data collection
issues have attracted more and more attention. Distinct from
existing solutions which usually adopted traditional wireless
technologies achieving low-bandwidth data connections towards
IoT devices, this paper adopts the 60 GHz communication
technology which is with increasing maturity, providing high-
bandwidth wireless transmission for data-intensive IoT devices,
such as high-definition (HD) cameras. However, 60 GHz links are
subject to line-of-sight short communication range, therefore, we
propose to use unmanned aerial vehicles (UAVs) to fly over data-
intensive IoT devices and achieve short-range high-throughput
60 GHz transmission in this paper. Moreover, for a set of HD
cameras deployed in the linear scenario, multiple UAV flights are
assigned to collect data by 60 GHz communication. To this end,
we investigate the UAV flight scheduling (UFS) problem which
aims to minimize the number of UAV flights while satisfying the
data requirements of all ground cameras (GCs) with limitations
of UAV’s energy and data storage. We prove that the UFS
problem is NP-hard and design efficient algorithms with constant
theoretical approximation ratios. Specifically, we first study a
special case of the UFS problem where all the cameras are on
the same direction of the UAV ground station, and propose two
algorithms NF SUFS and FF SUFS, whose approximation ratios
are both proved to be 2 by theoretical analysis. Then, we extend
the algorithms to a more general case with the cameras on both
directions of the ground station along the road, and put forward
the FF UFS algorithm that achieves an approximation ratio of
3. Finally, we conduct experiments to validate the effectiveness
and efficiency of our algorithms.

Index Terms—UAV-aided data collection, 60 GHz communica-
tion, flight scheduling, energy constraint.

I. INTRODUCTION

The Internet of Things (IoT) is a popular network paradigm
where massive number of objects, such as sensors, RFID
tags, cameras, smart phones, computers and people, are able
to interact with each other and achieve common goals [1].
In recent years, IoT has been widely applied in various
applications, such as smart city [2], smart agriculture [3], and
industrial systems [4].

With the development of IoT, a large number of heteroge-
neous devices and numerous applications are emerging, and
thus multiple wireless technologies are needed to be adapted
to different types of scenarios. As one of the most promising
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wireless technologies, 60 GHz communication provides multi-
Gbps links that can be well applied in wireless high-definition
(HD) multimedia, virtual reality and so on [5]–[7]. Its powerful
advantage of high bandwidth enhances the ability of data
transmission for some data-intensive IoT devices, such as HD
cameras.

In urban environment, some infrastructures, such as roads,
bridges, rivers, pipelines, and fences, need cameras deployed
for video surveillance of safety prevention or environmental
monitoring, which can be called linear scenarios. The cam-
eras distributed linearly along the infrastructure can capture
the events and store the data in their own storage. The
data must be transmitted to remote servers for long term
storage, effective data management and analysis. The video
data generated by the camera can be transmitted through a
wired way or wirelessly. When the network infrastructures
such as base stations and cables are inadequate or destroyed,
or when temporary monitoring is needed, the wireless data
transmission is preferred. In previous work, some researchers
have considered collecting data via wireless networks [8],
[9], where each ground node delivers its stored data to a
sink node via multi-hop wireless transmission. However, the
solutions offer low-rate data transmission which is not suitable
for efficient data collection of data-intensive nodes. As 60 GHz
technology continues to develop, it has shown remarkable ef-
fect on transmitting high bandwidth data. The wireless network
employing 60 GHz communication is flexible in deployment,
convenient in network distribution, and able to transmit high
bandwidth video data in a short time, but it also brings new
problems. 60 GHz millimeter waves decay rapidly in air
and are difficult to be used for long-distance communication
[10]–[12]. When deploying wireless networks to collect data,
the distance between nodes is limited by the communication
distance, and the introduction of 60 GHz exacerbates this
limitation. Besides, multi-hop transmission in linear scenarios
will undoubtedly increase the energy consumption of relay
nodes and shorten the network lifetime. In order to solve
this issue, mobile sinks can be used to approach the IoT
nodes and receive data [4], [13]. In this way, not only the
flexible deployment of the network can be realized, but also
the appropriate type of mobile sinks and data communication
protocols can be selected to adapt to various IoT networks.
Moreover, mobile sinks can well make up for the disadvantage
of short-distance 60 GHz communication.

Due to the advantages of mobility, flexibility and adaptive
altitude, unmanned aerial vehicles (UAVs) have attracted ex-
tensive attention in academic and industry [14]–[16]. For ex-
ample, UAVs equipped with wireless communication modules
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Fig. 1. A UAV-aided data collection scenario with 60 GHz communication. The UAV starts from the ground station, flies along the road, and chooses the
appropriate ground cameras on the path to collect data in flying and hovering mode. The UAV collects data no more than its storage, and must fly back to
the ground station before running out of its energy.

can deliver reliable, cost-effective, and on-demand wireless
services to desired areas, and they can also wirelessly charge
sensors to provide them with energy for data transmission
[17]. In recent years, some researchers have begun to use a
UAV as mobile sink for such data collection, where the ground
node can directly send its data to the UAV and the UAV will
bring the data to remote servers by flying. Because the UAV
can move very close to the ground node before transmission,
and the line-of-sight link of ground-to-air transmission is
better than that of ground-to-ground transmission. In addition,
compared with other types of mobile sinks (e.g., vehicles), the
UAV flies in the air and does not depend on the road conditions
on the ground. Since UAVs are energy constrained due to the
limited on-board battery, the energy-efficient UAV-aided data
collection has become a growing research interest.

In the UAV system, there is a UAV ground station as the
control center. The UAV starts from the ground station, collects
data and returns to the ground station. In this paper, this round
trip is called as a UAV flight. Because the resources of UAV
are limited, such as energy and data storage, multiple UAV
flights are needed for the data collection of data-intensive
IoT network. However, most of existing research works only
consider the scenarios with a single UAV [18]–[21], and cannot
solve the issues in the scenarios that require multiple UAVs or
multiple UAV flights. Since each UAV flight requires certain
costs, such as energy costs, maintenance costs and hardware
costs, it is a significant and challenging issue to minimize
the number of UAV flights while completing data collection
tasks. Sometimes when the amount of data is large, the UAV
needs to hover at a certain position for data collection. Thus,
the UAV’s energy is in general composed of two aspects, i.e.,

the propulsion energy consumption for flying and hovering,
and the communication related energy consumption. In linear
scenarios, the farther a UAV travels, the more nodes it can
choose to serve and the more energy consumed for flying, but
the less energy available for hovering and communicating with
grounds nodes, and vice versa. A trade-off should be made
between the energy consumption for flying to target nodes and
the energy consumption for hovering to collect data (including
hovering and data transmission). If the UAV flights are not
well scheduled, a large amount of energy will be spent on
unnecessary flying, which will reduce the energy available for
data collection and ultimately lead to the increase of flights and
costs. Further, when the ground station is located at arbitrary
position, the UAV needs to choose the ground nodes of which
direction to serve, making the problem more complicated and
difficult to be solved.

In this paper, we consider the scenario that UAVs need
to collect video data from a set of ground cameras along a
road, where each camera transmits data to the UAV by 60
GHz communication, and the UAV brings data to the ground
station, as shown in Fig. 1. In such a scenario, the UAV
collects data from cameras in flying and hovering mode. Due
to the limitation of the UAV’s energy and data storage, multiple
UAV flights may be essential to serve all the cameras. Hence,
we study the UAV flight scheduling (UFS) problem with the
objective of minimizing the number of UAV flights while all
the cameras can be served.

The contributions of this paper are summarized as follows:

• We consider multiple UAV flights for 60 GHz data collec-
tion in linear scenarios, and formulate the UFS problem
as a mixed integer linear programming (MILP) model,
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which aims to minimize the number of UAV flights while
satisfying data requirements of ground cameras with the
limitations of energy and data storage. In addition, we
also prove that the UFS problem is NP-hard.

• We study a special case of the UFS problem where all the
cameras are on the same direction of the ground station,
and propose the NF SUFS and FF SUFS algorithms.
According to the optimal solution of the relaxed problem,
we prove that the approximation ratio of our proposed
algorithms is 2.

• We extend the algorithms to a more general case with the
ground station located at an arbitrary position, and put
forward the FF UFS algorithm that assigns UAV flights
for the data collection on two directions. We explore that
the sum of the optimal solutions for two single-direction
subproblems is less than 1.5 times the optimal solution of
original problem, and prove that the FF UFS algorithm
achieves an approximation ratio of 3.

• We implement the proposed algorithms and conduct
simulations to evaluate the performance of our proposed
algorithms. Simulation results demonstrate that the aver-
age performance of FF UFS algorithm is at most 4.8%
higher than the near optimal solutions of the MILP model,
which is better than the theoretical approximation ratio.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III presents the system model
and formulates the problem. Section IV designs approximation
algorithms for the single-direction UFS problem. On this basis,
Section V studies the general case where the ground station is
located at arbitrary position. Numerical results are presented
in Section VI. We conclude the paper in Section VII.

II. RELATED WORK

UAV flight scheduling for IoT data collection has become a
interesting research issue, and there are several works to study
this issue in the past few years. In the following, we discuss
the existing solutions in two different kinds of scenarios,
i.e., two-dimensional scenarios and linear scenarios, and then
introduce the flying mode and hovering mode for UAV-aided
data collection.

A. Two-dimensional/Linear Scenarios of IoT Data Collection

Generally, the researchers considered IoT networks in a two-
dimensional area. In the early IoT networks, sensor nodes were
densely deployed in certain scale ranges and data collection
could be achieved through multi-hop wireless links, with
the aim of maximizing the data collecting rate [8], [22],
improving energy utilization [9], and so on. However, there
still exist some issues, such as low energy efficiency and
limited communication distance. To break above limitations,
researchers found the importance of mobility for IoT networks
[23], [24] and investigated the data collection problem with
mobile elements (MEs) [25], [26]. They studied the role
of MEs and categorized MEs according to the tasks they
need to perform. On this basis, Gao et al. [27] studied the
problem of efficient data collection in IoT networks with the
constraints that the mobile sink can only move periodically

along a fixed path at a certain speed. They proposed a heuristic
based on genetic algorithm and local search to maximize the
amount of data collected by mobile sinks and balance the
energy consumption. Similarly, Abdulla et al. [28] considered
a UAV glided around the sensor field in a circular trajectory.
They equipped the cluster heads with transceivers capable of
adaptive modulation, and adopted potential games to allocate
the UAV’s time slots among cluster heads in order to improve
network utility while achieving fairness among cluster heads.
However, they have not considered the influence of ME’s
traveling path on the objective optimization. Subsequently,
some researchers have begun to emphasize the impact of
path planning and jointly consider task scheduling on the
research problem [29]–[31]. To be specific, Tuyishimire et al.
[29] proposed a persistent path planning and UAV scheduling
model, using a group of UAVs from different ground stations
to complete the data collection task of ground sensors and
send the collected information to the nearest ground station,
with the aim of minimizing the total energy consumed by
all UAVs. In particular, they noted the fact that different
sensors might need to be served at distinct expected time and
proposed the corresponding heuristic algorithm. Resembly,
Zhang et al. [30] studied the problem of how to schedule
the minimum number of charging vehicles to charge lifetime-
critical sensors, and proposed algorithms to decompose the
traveling salesman problem (TSP) path according to the battery
capacity of each vehicle. Furthermore, they considered UAV-
aided data collection scenarios, and introduced the concept of
edge weight threshold. On this basis, the improved algorithm
called approAlgNoNei is proposed to ensure the freshness of
the collected data [32].

However, if each sensor node needs to be served once and
only once, these solutions could not perform well. For multi-
UAV-aided data collection in two-dimensional scenarios, the
UAV scheduling problem is often seen as a variation of TSP,
and the corresponding solutions can be divided into two cate-
gories. First one is to divide the target region and then arrange
a UAV for each sub-region and carry out path planning [33].
For each sub-region, the researcher can regard the problem as
a TSP with the goal of minimizing UAV’s energy consumption
and propose heuristic algorithms. Although the optimization of
energy efficiency is considered, the total energy consumption
of a UAV is not limited. This may lead to a special case, i.e.,
the total energy consumption exceeds the capacity of UAV
battery, which makes these solutions impractical. The second
one is to regard the problem as a variant of TSP first and
then divide the generated path according to UAV resource
limitations and data requirements [30], [32]. Since the TSP is
an NP-hard problem, heuristic algorithms are proposed when
the scale of the node is large. The segmentation based on
the non-optimal solutions of TSP may lead to unnecessary
UAV flights, and significantly affect the performance of these
algorithms.

Nevertheless, in some scenarios, sensors may be arranged
in sequence, in order to monitor some special structures with
linear nature such as oil/gas pipelines, roads, bridges, rivers,
and coasts. In theory, this linear scenario is a special case of
two-dimensional scenarios, so all the above solutions can also
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be applied to linear scenarios. In the linear scenario, since the
path to a specific node is unique, intermediate nodes along
the path are also determined. Therefore, when the farthest
served node is determined, the flying energy of the whole
UAV flight can be known in advance, and the selection of
the intermediate nodes along the path do not need to consider
energy consumption for flying. If the algorithms designed for
two-dimensional scenarios are applied in linear scenarios, the
above characteristics of linear scenarios are ignored, and thus
their performance could not be well.

Compared with two-dimensional scenarios, there are rela-
tively few studies specific to linear scenarios. Existing research
works mainly focus on the parameter control of UAVs, the
selection of cluster heads, and the data collection mode.
Jawhar et al. [18] presented a framework for monitoring linear
infrastructures using UAVs. They proposed three different
UAV movement approaches, and measured the system’s deliv-
ery ratio and average delay under various network conditions.
Similarly, Ren et al. [19] studied the data collection aided with
a mobile sink in an energy harvesting sensor network for traffic
monitoring and surveillance purpose on busy highways. They
first formulated a data collection maximization problem that
dealt with multi-rate transmission mechanism and transmission
time slot scheduling among the sensors. By contrast, Gong
et al. [20] studied the scenario where a UAV collected data
from a set of sensors on a straight line and satisfied the
data requirements of all sensors. They jointly optimized flight
speed, transmission power and intervals to minimize total
collection time. However, they did not take into account
of the system’s energy consumption. Vishnuvarthan et al.
[21] concentrated on the speed of mobile data collector and
each cluster’s data transmission range to solve the energy
hole problem and network lifetime reduction in strip-based
network. They only considered the energy consumption of
sensors, while ignoring that the energy of the mobile collector
was also limited and its tasks needed to be properly planned.
As discussed above, most existing research on UAV-aided
data collection in IoT networks is carried out using a single
UAV under the assumption that the UAV has sufficient energy.
Some researchers believe that for large-scale linear scenarios,
the scenario can be segmented according to the maximum
available energy of the UAV, and in each sub-region, there
is a ground station to control a single UAV for data collection
using the proposed algorithms. However, the operation costs of
multiple ground stations are relatively large, so it is practical
to consider large-scale scenarios that only one ground station
is set for multiple UAVs.

B. Flying/Hovering Mode for UAV-aided Data Collection

Due to the advantages of mobility and controllability, UAVs
are often used to aid data collection in IoT networks. They are
equipped with communication modules that can communicate
directly with ground sensors.

On the one hand, they can hover in the air to collect
data, termed as hovering mode, where UAVs are designed
to fly along the planned route and hover over the sensors in
sequence to collect data [34]–[36]. In this mode, Basagni et

al [34] studied the performance of sensors under two UAV-
aided data collection strategies, i.e., duty cycling and wake-
up mechanism, with respect to the amount of data collected,
the energy consumption of the sensors and their network
lifetime. Ebrahimi et al. [35] studied the projection-based data
collection problem, with the objective of minimizing the total
transmission power and the length of the UAV’s trajectory.
Furthermore, UAVs don’t have to hover directly above the
sensors, they can stop at a suitable position to serve multiple
sensors simultaneously [36].

On the other hand, UAVs can also collect data while flying,
termed as flying mode. Zhan et al. [37] assumed that a UAV
worked in the flying mode and discretized the UAV flight
duration to multiple time slots. They jointly optimized the
sensors’ wake-up schedule and UAV’s trajectory to minimize
the maximum energy consumption of all sensors, while en-
suring reliable and efficient data collection under the general
channel fading model. Fan et al. [38] also used a UAV for
data collection while flying, and they considered the data
transmission power from the perspective of sensors, aiming
to reduce the energy consumption of each sensor.

Generally speaking, the UAV-aided data collection in flying
mode is more complicated than that in hovering mode, because
the data transmission rate and time period of data collection
will vary with the UAV’s position and speed as in [39], [40].
Moreover, the selection of flying/hovering mode also depends
on the features of the scenarios.

To sum up, within the scope of our knowledge, only a
few of existing data collection solutions focus specially on
the linear scenarios with multi-UAVs or multiple UAV flights.
In this paper, we deploy ground cameras along the road and
consider the data collection of these cameras. There may be
many ground cameras, and thus a single UAV cannot complete
all data collection work in one flight. For this reason, we study
the UAV flight scheduling problem with cameras distributed
along the road, aiming at minimizing the total number of UAV
flights. Besides, in order to transmit video data efficiently, 60
GHz communication technology is adopted to provide higher
transmission rate. Due to the short transmission range and
weak signal penetration ability of 60 GHz communication link,
the UAV needs to fly close to the cameras and communicates
with them in flying and hovering mode.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model and formulate
the UAV flight scheduling problem. Under the constraints
of UAV’s energy and data storage, we aim to minimize the
number of UAV flights to complete the data collection tasks
of all the cameras. The main notations in this paper are
summarized in Table I.

A. System Model

A data collection system generally consists of a number
of ground cameras (GCs), UAVs, a UAV ground station and
a centralized controller. Let J = {1, 2, . . . , n} be the set of
GCs and dα be the position of ground station. The centralized
controller can periodically obtain the basic information of all
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TABLE I
SUMMARY OF NOTATIONS

Notation Explanation
n Number of ground cameras (GCs)

j GC j ∈ J , and J = {1, 2, . . . , n}
i Flight candidate (FC) i ∈ I , and I = {1, 2, . . . , n}
dα Position of ground station

dj Distance between GC j and GC 1

vopt Optimal UAV speed

Pc Power consumption of data communication

Pf Power consumption of flying

Ph Power consumption of hovering

E Total energy of UAV

B Total data storage of UAV

tj Hovering time needed to serve GC j

xi Variable to indicate whether FC i is activated

yij Variable to indicate whether GC j is assigned to FC i

zai Farthest position that FC i can reach in the direction A

zbi Farthest position that FC i can reach in the direction B

rc Rate of data communication

cameras, including their positions and data size, then assign
the UAVs to start from the ground station and complete
data collection tasks. We consider that the GCs are placed
in sequence along a road and the UAV is dispatched to
collect video data from these cameras. The positions of GCs
are denoted as d1, d2, . . . , and dn, where d1 = 0 and dj
(j ≥ 2) represents the distance between GC j and GC 1. Let
d1 < d2 < · · · < dn. The ground station can be placed at any
position along the linear infrastructure, i.e., d1 ≤ dα ≤ dn.

The controller dispatches multiple UAV flights to collect
data from GCs. In each flight, the UAV launches from the
ground station and moves along the road with fixed altitude
and speed. Let h be the flight altitude of the UAV. For a rotary-
wing UAV with speed V , the propulsion power consumption
can be approximated as a convex function [39], i.e.,

P (V ) ≈ P0(1 +
3V 2

U2
tip

) +
PiV0
V

+
1

2
d0ρsAV

3 (1)

where P0 and Pi are two constants representing the blade
profile power and induced power in hovering status, Utip
denotes the tip speed of the rotor blade, V0 is known as the
mean rotor induced velocity in hover, d0 and s are the fuselage
drag ratio and rotor solidity, ρ and A denote the air density
and rotor disc area. In order to consume less energy to fly
to the target GC, the UAV flies at the optimal speed vopt that
minimizes energy consumption per unit flight distance of UAV,
i.e.,

vopt = argmin
V >0

P (V )

V
(2)

Since our goal is to minimize the number of UAV flights, the
total energy of each UAV flight will be fully utilized. And
the UAV needs to fly to the target camera and hover before
each data collection. In such scenarios, communication related
energy consumption only accounts for a small part of the
total energy. What’s more, the communication related energy

consumption is too small that it is not on the same order of
magnitude with propulsion energy consumption [39]. So, we
use a constant Pc to represent the power consumption of data
communication. Let Pf and Ph denote the power consumption
of flying and hovering, respectively. The number of GCs that
can be served by a UAV flight is related to the total energy
of UAV, denoted by E, and the total data storage of UAV,
denoted by B.

As shown in Fig. 1, the UAV acts as an access point (AP) to
provide 60 GHz network, and GCs are equipped with 802.11ad
network adapters, acting as stations. The UAV can collect
data in flying mode within the orange region in Fig. 1 and
in hovering mode at a certain position close to the target GC.
When the UAV flies near the target GC and the GC enters the
UAV’s communication range, the UAV will start beamforming
to find the optimal communication link with the target GC
[41], [42]. In detail, the UAV will conduct initiator transmit
sector sweep and the GC performs in omnidirectional listening
mode to determine the optimal transmitting sector from UAV
to GC. The GC also determines the optimal transmitting sector
from itself to UAV in the same manner. Then, the UAV will
send request frames to the GC in omnidirectional mode, and
the GC receives the frame from different directional beams to
train its receiving sector. Next, the UAV trains its receiving
sector in the same way. After that, the UAV and GC can
determine their respective transmitting sector and receiving
sector. Finally, the optimal communication link is determined
by pairing them. When the UAV transmits data in the process
of flying to the target GC, the transmission distance between
them and the arrival angle of beam will constantly change
with the movement of the UAV, resulting in link quality
degradation. When UAV detects the link quality degradation,
it will activate beam tracking and carries related requests in
the header of the its frame [43]. Therefore, it can quickly test
and switch to the beam with the best SNR while sending data.

Due to the limitation that 802.11ad technology can support a
short transmission range only up to 10 meters and line-of-sight
propagation [44], the communication range is not long enough
so that it is normally impossible for the UAV to complete
data collection of the data-intensive cameras when passing this
range at the speed of vopt. Therefore, data collection in the
hovering mode is essential. Because very small amount of
data is collected by the UAV in the flying mode, we only
concentrate on the amount of data needed to be collected in
the hovering mode and let tj denote the hovering time needed
to collect all data of GC j. For each GC, its data collection
task cannot be divided, that is to say it should be completed by
only one flight. Considering the energy limitation of UAV, we
assume that each GC j satisfies 2Pfdj/v+(Ph+Pc)tj ≤ E.
Similarly, considering the data storage limitation of UAV, we
assume that each GC j satisfies tj · rc ≤ B where rc denotes
the rate of data communication.

B. Problem Formulation

Due to the limitations of UAV’s energy and data storage, a
single UAV cannot serve a large number of GCs in a round
flight, thus the data collection conducted by multiple flights
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Fig. 2. An example for UAV-aided data collection during FC i, where the UAV flies between [zai , z
b
i ]. If GC j is assigned to this FC, the position of this

GC must meet the restriction that zai ≤ dj ≤ zbi .

may be required. Moreover, data from one GC can only be
collected during one flight, and it shouldn’t be split to other
flights. Therefore, at most n UAV flights are needed and let
I = {1, 2, . . . , n} denote the set of UAV flight candidates
(FCs) where part of FCs are activated as UAV flights to serve
the GCs. It is necessary to design a UAV flight scheduling
strategy so as to efficiently utilize the resources of UAV and
minimize the number of UAV flights.

Definition 1 (UFS Problem): Given a UAV-aided data
collection scenario with FC set I = {1, 2, . . . , n} and GC
set J = {1, 2, . . . , n}, the UAV flight scheduling (UFS)
problem is to determine the minimum number of the activated
UAV flights, and find the proper FC-GC assignments while
satisfying the data requirements of all GCs with the energy
and data storage constraints of FCs.

A flight scheduling strategy would determine the minimum
number of UAV flights and make FC-GC assignments for
each GC to effectively reduce system costs, such as the costs
produced by UAV operation and battery charging. Define xi as
a decision variable to indicate whether FC i is activated. That
is, xi = 1 if FC i is activated and xi = 0 otherwise. Define
yij as a decision variable to indicate if GC j is assigned to
FC i. That is, yij = 1 if the data collection task of GC j is
assigned to FC i and yij = 1 otherwise. Thus, we have

xi = {0, 1},∀1 ≤ i ≤ n. (3)

yij = {0, 1},∀1 ≤ i ≤ n, ∀1 ≤ j ≤ n. (4)

In the period, the data collected by GC j is required to
be uploaded and this mission must be completed by only one
flight. Here, each GC j is assigned to only one FC.

n∑
i=1

yij = 1,∀1 ≤ j ≤ n. (5)

Eq. (3), (4), and (5) are called the FC-GC assignment con-
straints.

If GC j is to be assigned to FC i, FC i must have been
activated already. This is called the FC activation constraint.

yij ≤ xi,∀1 ≤ i ≤ n, ∀1 ≤ j ≤ n. (6)

A UAV launches from the ground station, and it has two
flight directions along the line, i.e., the direction towards GC
1 (called direction A) and the direction towards GC n (called
direction B), as shown in Fig. 2. In order to characterize the
flight range of FC i, we define zai as a decision variable to
represent the farthest position FC i reaches in the direction A.
Similarly, we define zbi as a decision variable to represent the
farthest position FC i reaches in the direction B. We can see
intuitively from Fig. 2 that

0 ≤ zai ≤ dα ≤ zbi ≤ dn,∀1 ≤ i ≤ n. (7)

Let δj denote whether GC j is located at the direction A
of ground station. If GC j is located at the direction A of the
ground station, we set δj = 1, otherwise, δj = 0, i.e.,

δj =

{
1 dj ≤ dα
0 dj > dα

(8)

If GC j is assigned to FC i, i.e., yij = 1, a constraint should
be satisfied firstly, that is, the GC is in the flying range of FC
i that is determined by the values of zai and zbi . Specifically,
if GC j is located at the direction A of ground station, dj
should be in the range of [zai , dα]. When GC j is located at
the direction B, dj should be in the range of [dα, z

b
i ]. Thus,

we have

yij [(dα − dj)δj + (dj − dα)(1− δj)]
≤ (dα − zai )δj + (zbi − dα)(1− δj),

∀1 ≤ i ≤ n, ∀ ≤ j ≤ n.
(9)

If GC j is not assigned to FC i, i.e. yij = 0, the constraint
is always be satisfied. Eq. (7), (8), and (9) are called the FC
range constraints.

Since the energy of a UAV is limited, the total consumption
for UAV in FC i cannot exceed the total energy provided by
the battery. The UAV energy constraint can be modeled as

(Ph + Pc)

n∑
j=1

tjyij︸ ︷︷ ︸
hovering and data communicating energy

+2Pf
zbi − zai
vopt︸ ︷︷ ︸

flying energy

≤ E,∀1 ≤ i ≤ n.

(10)
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where Ph and Pf are two constants mentioned in the previous
subsection representing the power consumption of hovering
and flying, respectively. Pc denotes the power consumption
of data communication. vopt denotes the optimal speed that
minimizes energy consumption per unit flight distance of UAV
defined in Eq. (2). Other related parameters are explained in
details in Table I. It is observed from Eq. (10) that the energy
consumption consists of two components: one is the energy
consumed for hovering and data communicating, the other is
the energy consumed for flying.

Since the data storage of the UAV is also limited, the amount
of collected data in FC i cannot exceed the total storage, i.e.,

rc

n∑
j=1

tjyij ≤ B, ∀1 ≤ i ≤ n. (11)

where rc denotes the rate of data communication and B
denotes the total data storage.

Our objective is to minimize the number of FCs that are
activated while all the GCs can be well served, i.e.,

min

n∑
i=1

xi (12)

Therefore, the UFS problem can be formulated as an MILP
model as follows.

min

n∑
i=1

xi

s.t. FC-GC assignment constraints: (3), (4), (5);
FC activation constraint: (6);
FC range constraints: (7), (8), (9);
UAV energy constraint: (10);
UAV data storage constraint: (11).

.

Theorem 1: The UFS problem is NP-hard.
Proof: The proof is conducted on a polynomial-time re-

duction from the classical bin packing problem (BPP) which
is known to be NP-hard. Firstly, the UFS problem is an NP
problem, because the solution can be verified in polynomial
time. Secondly, we reduce the BPP as an example of the
UFS problem. For a BPP, given a set I = {1, 2, . . . , n} of
n indivisible items, each of which has a specific weight wi
(i = 1, 2, . . . , n), and M bins all having the same capacity
c, c ≥ wi for all i, the problem aims to select the minimum
number of bins while each item can be packed into one of them
[45]. We reduce the problem to the UFS problem as follows:
each item in the BPP represents a GC, and the weight of item
is defined by the time requirement of GC’s data transmission,
i.e., wi = ti, (i = 1, 2, . . . , n); each bin in the BPP repre-
sents a FC; the bin’s capacity represents the corresponding
FC’s maximum service time, that is c = E/(Ph + Pc) if
Pf = 0 and B is adequate. Hence, we obtain a UFS instance
(Pf = 0, B → +∞) from the BPP. Since the BPP is NP-hard,
we prove that the UFS problem is NP-hard.

However, the BPP is only a special case of the UFS
problem, and the existing algorithms for the BPP cannot solve

our problem. Hence, it is necessary to come up with new
algorithms.

IV. ALGORITHM DESIGN FOR SINGLE-DIRECTION UFS
PROBLEM

Since the UFS problem is proved to be NP-hard, its optimal
solution could not be obtained in polynomial time. This paper
is devoted to finding an approximation algorithm for this
problem and proving its approximation ratio. The concept of
approximation ratio is usually defined as follows. For any input
of size n, if the cost C of the solution by the algorithm is
within a factor of ρ (n) of the cost C∗ of an optimal solution,
that is, max

(
C
C∗ ,C

∗

C

)
≤ ρ (n), we can say that the algorithm

has an approximation ratio of ρ (n) [46].
Firstly, we consider the UFS problem under the condition

that the ground station is deployed at the position of GC 1, i.e.,
dα = 0. Since the GCs are all in a single direction (direction
B) of the ground station, the problem is called single-direction
UFS (SUFS) problem.

In the following, we firstly relax the problem considering
that the data collection task of each GC can be divided
and arranged into multiple FCs, then propose the Iterated
RSUFS algorithm to solve the problem. A feasible solution
to the SUFS problem can be obtained by adjusting the results
obtained by RSUFS. On this basis, we design the NF SUFS
algorithm and prove its constant approximation. Finally, we
propose an improved algorithm called FF SUFS, which makes
better use of the remaining available time of UAV. To be
intuitive, we illustrate the execution results of these four
algorithms through an example in Fig. 3.

A. Algorithm RSUFS to SUFS

According to the definition of the SUFS problem, the data
collection task of each GC cannot be divided and would be
assigned to one and only one flight. We relax the constraint and
allow GC’s data collection task can be divided and assigned
to multiple flights. The relaxed problem is called the RSUFS
problem.

As described above, at most n flights are needed, and FCs
{1, 2, . . . , n} are provided for selection. To save energy and
put more energy into data collection, the UAV only needs to
fly to the farthest GC that is assigned to this flight, and turns
back. So, the farthest served GC of any two FCs would be
distinct. On this basis, we can think that the farthest served
GC of FC i is GC i. In other words, if FC i is activated, GC
i must be served by FC i. When the maximum flight distance
is determined, the energy available for hovering to collect
data will also be determined. Let Ti denote the maximum
time available for data communication which depends on the
remaining energy and storage capacity of the FC i, i.e.,

Ti = min(
E − 2Pfdi

vopt

Ph + Pc︸ ︷︷ ︸
depending on energy

,
B

rc︸︷︷︸
depending on storage

). (13)

Since the flight distance increases as the index i increases, we
can get that T1 ≥ T2 ≥ · · · ≥ Tn. In the RSUFS problem,
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(d) Algorithm FF SUFS

Fig. 3. An illustration of the execution results of the four algorithms. In this example, there are six GCs in total, so at most six FCs are needed. According to
the definition of FC, we use six rectangles of different length to represent the time that FC can utilize for hovering to do data transmission, and let Ti denote
the available data communication time of FC i. For i ∈ [4, 6], the time Ti is varying, because UAV flying consumes more energy to serve long-distance
GCs so that the remaining energy is not enough relative to storage capacity, and Ti is limited by varying remaining energy. For i ∈ [1, 3], the available time
Ti is the same, because UAV flying consumes less energy, and remaining energy for hovering and data communicating is abundant so that Ti is limited by
fixed storage capacity. Because the Iterated RSUFS algorithm divides the data collection tasks of GCs, some GCs’ service time will be divided into two parts
such as t

(1)
5 and t

(2)
5 in Fig. 3(a). By comparing the number of activated FCs in Fig. 3(b), Fig. 3(c), and Fig. 3(d), it can be found that FF SUFS algorithm

obtains the best result with only 4 activated FCs.

a GC can be assigned to multiple flights, and each flight
completes part of its data collection task.

We design an iterative algorithm for the RSUFS problem,
called Iterated RSUFS. Let tuple (j, tij) represent the FC-GC
assignment where FC i takes time tij to serve GC j. We find
that FC n must be activated so that GC n can be served.
In each iteration, we determine the farthest uncompleted GC
j, and activate FC j so that GC j’s data collection task
can be completed, because FC j is the one with the most
residual energy which can serve GC j. Meanwhile, other GCs
in descending order of |dj − dα| are assigned as many as
possible. In addition, the last assigned GC of each iteration
maybe partially assigned to the current FC, and would be
completed in the next iteration.

Lemma 1: The Iterated RSUFS algorithm can obtain an
optimal solution for the RSUFS problem.

Proof: Let UIR be the set of activated UAV flights deter-
mined by the Iterated RSUFS algorithm . For any solution U ′

of the RSUFS problem, we want to prove that |U ′| ≥ |UIR|.
Let UIR = {i1, i2, ..., ip} ⊂ I, where i1 > i2 > · · · > ip. Let
U ′ = {i′1, i′2, ..., i′q} ⊂ I, where i′1 > i′2 > · · · > i′q .

According to the Iterated RSUFS algorithm, we start from
GC n and analyze in the order of decreasing distance. When
there exists k that makes ik 6= i′k and is = i′s for all s < k, we
can get that ik ≤ i′k, otherwise the data collection task of GC
ik cannot be completed in the solution U ′. Because the Iterated
RSUFS algorithm makes full use of UAVs’ service time, we
can get that Ti1 + Ti2 + ... + Tik−1

<
∑n
j=ik

tj . If ik > i′k,
GC ik must be fully served before UAV flight i′k, which is

Algorithm 1: Iterated RSUFS
input : GCs J = {1, 2, . . . , n} with tj ;

{T1, T2, . . . , Tn}
output: UAV flights U and FC-GC assignments R

1 begin
2 U = {n}, R = ∅;
3 i = n, T ′ = Ti, Ri = ∅;
4 for j = n to 1 do
5 if tj ≤ T ′ then
6 Ri = Ri ∪ {(j, tj)};
7 T ′ = T ′ − tj ;
8 else
9 if T ′ 6= 0 then

10 Ri = Ri ∪ {(j, T ′)};
11 tj = tj − T ′ ;
12 end
13 R = R∪ {Ri} ;
14 i = j, T ′ = Ti − tj , U = U ∪ {i};
15 Ri = Ri ∪ {(j, tj)};
16 end
17 end
18 R = R∪ {Ri} ;
19 return U and R ;
20 end



9

infeasible. Similarly, is ≤ i′s for all s > k ∧ s ≤ min{p, q}.
Ti1 + Ti2 + ... + Tip−1 + Tp ≥

∑n
j=1 tj and Ti1 + Ti2 +

... + Tip−1
<
∑n
j=1 tj . If q < p, Ti′1 + Ti′2 + ... + Ti′q ≤

Ti1 + Ti2 + ...+ Tiq ≤ Ti1 + Ti2 + ...+ Tip−1
<
∑n
j=1 tj , so

that it is impossible. Hence, we get that q ≥ p.
When there does not exist k that makes ik 6= i′k and is =

i′s for all s < k, that is is = i′s for all s ≤ min{p, q}. Thus,
we can get that q ≥ p. That is because Ti′1 +Ti′2 + ...+Ti′q ≤∑n
j=1 tj and the solution U ′ is not feasible if q < p.
As discussed above, we can obtain that q ≥ p, and the

solution of the Iterated RSUFS algorithm is optimal.
Now, we propose the RSUFS to SUFS algorithm that can

transfer the solution of the RSUFS problem to that of the SUFS
problem. The set of initial UAV flights and set of initial FC-GC
assignments are respectively set to be UIR and RIR, which
are obtained from the Iterated RSUFS algorithm. For each
UAV flight ik, all tuples in Rik except for GC ik’s tuple are
moved into Rik−1, and if the UAV flight ik − 1 has not been
activated, it will be activated at the same time. In addition, if
there exists a tuple of GC ik in Rik−1

, it will be merged with
the corresponding tuple in Rik . See Algorithm 2 for more
details.

Algorithm 2: RSUFS to SUFS
input : GCs J = {1, 2, . . . , n} with tj ;

{T1, T2, . . . , Tn}; The solution of Iterated
RSUFS UIR = {i1, i2, ..., ip} and RIR

output: UAV flights U and FC-GC assignments R
1 begin
2 U = UIR, R = RIR, k = p , jo = 1 ;
3 while k ≥ 2 do
4 if ∃f, jo ≤ f < ik then
5 U = U ∪ {ik − 1} ;
6 move all (f, tf ) from Rik to Rik−1 ;
7 R = R∪ {Rik−1} ;
8 end
9 if ∃(ik, t(1)ik ), (ik, t

(1)
ik

) ∈ Rik−1
then

10 merge (ik, t
(1)
ik

) into Rik ;
11 end
12 jo = ik + 1 , k = k − 1 ;
13 end
14 return U and R ;
15 end

Lemma 2: The number of activated UAV flights obtained by
the RSUFS to SUFS algorithm would not exceed two times
of the RSUFS algorithm, that is |URTS | < 2|UIR|.

Proof: Let p = |UIR|. As shown in the RSUFS to SUFS
algorithm, the number of iterations is p−1. In each iteration, at
most one UAV flight is activated. Thus, |URTS | ≤ p+p−1 <
2p, i.e, |URTS | < 2|UIR|.

B. Algorithm NF SUFS

Through analysis, we find that the RSUFS to SUFS algo-
rithm does not make full use of the remaining available time
of activated UAV flights in the process of FC-GC assignments,

resulting in the increment of the number of UAV flights. In
order to reduce the number of activated flights as much as
possible, we design an algorithm called NF SUFS, which
iteratively activates UAV flights and each activated flight
should be fully utilized by assigning as many as GCs to it.
Since the UAV’s available service time is determined by its
data storage and the distance to the farthest GC, we find that
the FCs can be abstracted as bins with different capacities, and
the next-fit strategy of bin packing is adopted in the NF SUFS
algorithm. The algorithm iteratively assigns the GCs in the
order of decreasing its distance. In each iteration, a GC is
assigned to the current activated flight, and a new flight is
activated if the current flight is not available. More detailed,
we start from the farthest GC and assume that GC j can be
assigned to flight i, for the next GC j − 1, if its service time
of tj−1 is smaller than the remaining available time of flight
i, then it can be assigned to flight i, otherwise, it will activate
a new flight whose farthest serving point is GC j − 1. Repeat
until all GCs are assigned.

Algorithm 3: NF SUFS
input : GCs J = {1, 2, . . . , n} with tj ;

{T1, T2, . . . , Tn}
output: UAV flights U and FC-GC assignments R

1 begin
2 U = {n}, R = ∅;
3 i = n, T ′ = Tj ,Ri = ∅;
4 for j = n to 1 do
5 T ′ = T ′ − tj , Ri = Ri ∪ {j} ;
6 if j > 1 then
7 if T ′ < tj−1 then
8 R = R∪Ri;
9 i = j − 1, T ′ = Ti, Ri = ∅,

U = U ∪ {i};
10 end
11 else
12 R = R∪Ri;
13 end
14 end
15 return U and R ;
16 end

Next, we analyze the performance of the Algorithm
NF SUFS on the basis of Lemma 1 and Lemma 2.

Theorem 2: The approximation ratio of NF SUFS algorithm
is 2.

Proof: Let UNS be the solution of the NF SUFS Algorithm.
Let OPT be the number of UAV flights determined by the op-
timal solution of the SUFS problem. Let OPT r be the number
of activated flights determined by the optimal solution of the
RSUFS problem. We can obtain that OPT r ≤ OPT . Let
UIR be the solution of Iterated RSUFS algorithm . Let URTS
be the solution of RSUFS to SUFS algorithm. According to
Lemma 1 and 2, we get that |URTS | < 2|UIR| = 2OPT r.
Since we can easily find that |UNS | ≤ |URTS |, we obtain
that |UNS | ≤ |URTS | < 2|UIR| = 2OPT r ≤ 2OPT . Thus,
|UNS | ≤ 2OPT .
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C. Algorithm FF SUFS

In order to further improve algorithm performance, we try
to adopt the first-fit strategy of bin packing, and propose
the corresponding algorithm called FF SUFS. The FF SUFS
algorithm iteratively assigns the GCs in the order of decreasing
their distance. In each iteration, it assigns the GC to the first
appropriate activated flight and activates one new flight if no
activated flight is available. Repeat until all GCs are assigned.
Compared with the NF SUFS algorithm, for the assignment of
an GC j, the FF SUFS algorithm will check all the activated
flights in the activation order, while the NF SUFS algorithm
only checks the last activated flight.

Since the FF SUFS algorithm utilizes the remaining avail-
able time of UAVs more reasonably than the NF SUFS
algorithm, the approximation ratio of FF SUFS is no more
than 2 which is obtained in Theorem 2.

Algorithm 4: FF SUFS
input : GCs J = {1, 2, . . . , n} with tj ;

{T1, T2, . . . , Tn}
output: UAV flights U and FC-GC assignments R

1 begin
2 U = ∅, R = ∅;
3 for j = n to 1 do
4 id = j ;
5 foreach i ∈ U do
6 if T

′

i >= tj then
7 id = i ;
8 break;
9 end

10 end
11 if id == j then
12 U = U ∪ {j}, Rj = ∅, T

′

j = Tj ;
13 end
14 T

′

id = T
′

id − tj , Rid = Rid ∪ {j};
15 end
16 foreach i ∈ U do
17 R = R∪Ri
18 end
19 return U and R ;
20 end

V. ALGORITHM DESIGN FOR GENERAL UFS PROBLEM

In this section, we consider the general UFS problem where
the ground station is deployed at any position between GC
1 and GC n, i.e., d1 ≤ dα ≤ dn, and propose a constant
approximation algorithm for this problem.

A. Algorithm FF UFS

We propose an algorithm called FF UFS, and its basic idea
is to assign UAV flights for data collection in two directions,
respectively. As shown in Algorithm 5, we first find k so that
dk ≤ dα < dk+1, and divide the GCs into two groups, i.e.,
{1, 2, . . . , k} and {k + 1, k + 2, . . . , n}. We first invoke the
FF SUFS algorithm to deal with GCs in {1, 2, . . . , k} (the

corresponding set Ja), and obtain the set of UAV flights Ua.
In order to minimize the number of UAV flights, we then
use the remaining available time of flights in Ua to serve
the GCs in {k + 1, k + 2, . . . , n} (the corresponding set Jb).
More detailed, we sort the flights according to the residual
energy and available time in the descending order and start
from the farthest GC and consider whether the UAV can fly
to serve it and return back to the ground station, and so on.
Finally, we deal with the rest GCs in {k + 1, k + 2, . . . , n}
(the corresponding set J ′b) by invoking the FF SUFS algorithm
again, and obtain the set of UAV flights Ub. Thus, we can get
the final set of UAV flights U , i.e., Ua ∪ Ub.

B. Approximation of FF UFS

Theorem 3: The approximation ratio of FF UFS algorithm
is 3.

Proof: Let Ug be the solution of FF UFS algorithm, and
ALGg = |Ug|. Let Uoptg be the optimal solution of the general
UFS problem, and OPTg = |Uoptg |. Let Us(Ja) be the solution
of FF SUFS algorithm with Ja, and ALGs(Ja) = |Us(Ja)|.
Let Us(Ja)opt be the optimal value of the SUFS problem with
Ja, and OPTs(Ja) = |Us(Ja)opt|. Hence, we get:

ALGg = ALGs(Ja) +ALGs(J
′
b)

≤ ALGs(Ja) +ALGs(Jb)

≤ 2OPTs(Ja) + 2OPTs(Jb)

(14)

For the optimal solution Uoptg , there are some flights that the
UAV only flies to serve GCs in direction A, i.e., Uoptga . There
are some flights that the UAV only flies to serve in direction
B, i.e., Uoptgb . There are also some flights that the UAV flies
across the two directions, i.e., Uoptgc . Let Uoptga

′
= Uoptga and

Uoptgb

′
= Uoptgb . Let {ic1 , ic2 , . . . , ick} be the set of Uoptgc . For

each flight icp , the energy is consumed in two directions, i.e.,
Eacp and Ebcp . If Eacp ≥ Ebcp , flight icp will not serve the
GCs in direction B and Uoptga

′
= Uoptga

′ ∪ {icp}. Otherwise,
flight icp will not serve the GCs in direction A and Uoptgb

′
=

Uoptgb

′∪{icp}. Let ka be the number of flights added into Uoptga
′.

Thus, there would be k−ka groups of GCs in direction A and
ka groups of GCs in direction B are not served. We need to
arrange at most dk−ka2 e flights to serve these GCs in direction
A and dka2 e to serve the GCs in direction B. As discussed
above, we construct a solution where no UAV flight across the
two directions, and the number of flights is |Uoptga

′|+ |Uoptgb

′|+
k′, where k′ ≤ dk−ka2 e+ d

ka
2 e and |Uoptg | = |Uoptga

′|+ |Uoptgb

′|.
In additional, we can get:

|Uoptga
′|+ |Uoptgb

′|+ k′ ≤ |Uoptg |+ d
k − ka

2
e+ dka

2
e

≤ |Uoptg |+
k

2
+ 1 ≤ 1.5|Uoptg |+ 1 = 1.5OPTg + 1

(15)

Since OPTs(Ja) +OPTs(Jb) ≤ |Uoptga
′|+ |Uoptgb

′|+ k′, we
merge Eq. (14) and Eq. (15) as follows:

ALGg ≤ 2(OPTs(Ja) +OPTs(Jb)) ≤ 2(|Uoptga
′|

+|Uoptgb

′|+ k′) ≤ 3OPTg + 2
(16)
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Algorithm 5: FF UFS
input : GCs J = {1, 2, . . . , n} with dj and tj ;

Ground station dα; UAV parameter E, vopt,
Pc, Pf , and Ph

output: UAV flights U and FC-GC assignments R
1 begin
2 U = ∅, R = ∅, m = 0;
3 find k so that dk ≤ dα < dk+1 ;
4 /* deal with GCs {1, 2, . . . , k} */
5 Ja = {1, 2, . . . , k} ;
6 invoke Algorithm FF-SUFS with Ja, and obtain

Ua, Ra, remaining time{T a1 , T a2 , . . . , T am} and
remaining energy {Ea1 , Ea2 , . . . , Eam} ;

7 /* deal with GCs {k + 1, k + 2, . . . , n} */
8 Jb = {k + 1, k + 2, . . . , n} ;
9 sort Ua by decreasing order according to Eai and

T ai , let {i1, i2, . . . , im} denote the sorted result;
10 f = 1, j = n;
11 while f ≤ m and j ≥ k do
12 if j ∈ Jb and

Eaif >=
2Pf (dj−dα)

vopt
+ (Ph + Pc)tj and

T aif ≥ tj then
13 FC if can fly farthest to GC j ;
14 assign GC j to Rif , update T aif , Eaif ;
15 Jb = Jb \ {s} ;

16 T aif = min(T aif ,
Eaif

Ph+Pc
);

17 for s = j − 1 to 1 do
18 if s ∈ Jb and T aif >= ts then
19 Jb = Jb \ {s} ;
20 assign GC j to Rif , update T aif ,

Eaif ;
21 end
22 end
23 f = f + 1 ;
24 end
25 else
26 j = j − 1 ;
27 end
28 end
29 let J ′b denote the rest of Jb, invoke Algorithm

FF-SUFS with J ′b, and obtain Ub and Rb ;
30 U = Ua ∪ Ub, R = {R1,R2, · · · ,R|U|} ;
31 return U and R ;
32 end

VI. PERFORMANCE EVALUATION

The theoretical analysis has verified the worst-case perfor-
mance bounds of the proposed algorithms. In this section,
we conduct simulations to further evaluate the average perfor-
mance of our proposed algorithms. As studied above in Eq.
(13), for each UAV flight, the available data communication
time is limited by UAV’s energy and storage capacity. In real
scenarios, the storage capacity can be a fixed constant for each
FC, but the energy used for hovering and data communicating

TABLE II
EXPERIMENTAL PARAMETERS AND VALUES

Notation Explanation Value
E Total UAV energy (J) 450000

Ph Power consumption of hovering (W ) 168

Pc Power consumption of data communication (W ) 5

v Optimal UAV speed (m/s) 18

Pv Power consumption of flying at speed v (W ) 159

varies with the UAV flying distance. Hence, we consider that
the storage capacity is adequate and only concentrate on the
constraint of UAV energy in our simulations.

A. Simulation Settings

We consider road scenarios for UAV-aided data collection.
We set the length of the road to be 10 km, and there are
from 10 to 500 GCs evenly deployed along the road. The
distance between adjacent GCs is roughly the same, allowing
a fluctuation of less than 10 meters. Referring to the UAV’s
parameter settings [39], the notations and their corresponding
values used in our simulations are summarized in Table II. For
each GC, the amount of data that needs to be collected may
be different, due to individual function requirements. Hence,
we set a random service time for each GC, which is subject
to the random distribution in (1, 10) minutes.

To evaluate the performance of the proposed algorithms,
we present the MILP-based solution as a benchmark, which
can obtain the near-optimal solution of UFS problem by
using Gurobi [47] to solve the MILP model directly. In
addition, we also compare with another benchmark algorithm
approAlgNoNei [32] that provides an heuristic solution by
finding all TSP paths within the edge weight threshold and
segmenting them with the limitation of the UAV’s total energy.

For each setting, we randomly generate 20 different scenar-
ios to run our algorithms and the compared algorithms, and
take the average as the final results.

B. Evaluation of FF SUFS and NF SUFS algorithms

In this part of simulations, we consider the scenarios where
the ground station is deployed at the left end of the road.
We run the algorithms FF SUFS, NF SUFS, MILP-based, and
approAlgNoNei, and evaluate the performance in terms of the
number of flights and computation time. The results are shown
in Table III. It can be seen from the table that there is only
a small gap between our solutions and MILP-based solutions
on the performance of number of flights, which validates the
near optimality of our algorithms. When the number of GCs
becomes large (e.g., n = 120), the MILP model cannot be
solved within an acceptable time, but our proposed algorithms
can still provide solutions efficiently. In addition, we find
that algorithm FF SUFS performs better than NF SUFS and
approAlgNoNei, and this advantage becomes more significant
as the number of GCs n increases.

We also compare the results gotten from FF SUFS,
NF SUFS and approAlgNoNei when increasing the number
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TABLE III
PERFORMANCE OF FF SUFS, NF SUFS, MILP-BASED AND APPROALGNONEI FOR THE SUFS PROBLEM

Number of GCs
Algorithm FF SUFS NF SUFS MILP-based approAlgNoNei

Flights Time(ms) Flights Time(ms) Flights Time(ms) Flights Time(ms)

n = 10 2.55 0.02 2.60 0.01 2.55 36.00 2.80 1.79

n = 40 7.45 0.07 8.15 0.06 7.45 2.86× 102 9.00 32.42

n = 80 14.20 0.13 15.55 0.11 14.15 2.39× 103 17.25 1.69× 102

n = 120 21.45 0.20 23.55 0.17 - - 25.70 4.67× 102

of GCs n to a large value. As shown in Fig. 4, the number
of flights obtained by these three algorithms shows an almost
linear growth trend with the increment of n. Moreover, the two
curves in this figure show that the number of flights obtained
by FF SUFS are about 16% to 17.6% less than approAl-
gNoNei, and the number of flights obtained by NF SUFS
are about 7.8% to 10.6% less than approAlgNoNei. Hence,
FF SUFS shows better performance, and the larger n is, the
bigger the gap between FF SUFS and the other two algorithms
is. That is because when assigning a GC to flights, FF SUFS
will consider all the flights that have been activated and make
full use of their remaining energy.
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Fig. 4. Performance of FF SUFS, NF SUFS and approAlgNoNei varying
the number of GCs.

All the experimental results agree with the constant approx-
imation ratio we have proved. It can be seen more clearly
from Table III that the results of FF SUFS and NF SUFS are
close to the results of MILP-based solution, much less than
our proved approximation ratio 2.

C. Evaluation of FF UFS algorithm

In this part of simulations, we deploy the ground station
at the middle of the road, i.e., dα = 5000m, and then
show the performance of FF UFS, MILP-based solution and
approAlgNoNei in Table IV. It can be found that when the
ground station is deployed at the middle of the path, the
problem becomes more complicated than the case when the
ground station is deploy at one end of the road, and the
computation time of these three algorithms increases signif-
icantly. When the number of GCs n reaches 80, the MILP-
based solution can no longer obtain the results within an
acceptable time. Similar with Table III, the results gotten from
FF UFS are very close to the near-optimal solution gotten
from MILP-based solution and better than the results gotten

from approAlgNoNei. Moreover, when the number of GCs n
becomes larger, the advantage of FF UFS algorithm becomes
more significant.

We also compare the performance of FF UFS and approAl-
gNoNei varying the number of GCs. As shown in Fig. 5, the
number of UAV flights required by FF UFS and approAl-
gNoNei shows a trend of almost linear growth. Meanwhile,
FF UFS performs better than approAlgNoNei, and the gap
between them becomes larger along with the growth of n.
When n = 500, the gap reaches 13.6.
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Fig. 5. Performance of FF UFS and approAlgNoNei varying the number of
GCs .

To observe the performance of algorithms when varying the
position of ground station, we set 11 different positions for
ground station, i.e, dα = 1000 ∗ i, where i ∈ [0, 10]. As we
can see intuitively from Fig. 6, the number of flights is smallest
when dα = 5000, and grows larger when the ground station
moves from the middle to the both ends. Moreover, Fig. 6(a)
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Fig. 6. Performance of FF UFS, MILP-based and approAlgNoNei varying
position of ground station.
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TABLE IV
PERFORMANCE OF FF UFS, MILP-BASED AND APPROALGNONEI WHEN GROUND STATION IS AT THE MIDDLE POSITION

Number of GCs
Algorithm FF UFS MILP-based approAlgNoNei

Flights Time(ms) Flights Time(ms) Flights Time(ms)

n = 10 2.20 0.04 2.10 51.9 2.35 1.70

n = 40 6.50 0.12 6.45 4.10× 104 7.45 33.69

n = 80 12.40 0.21 - - 14.50 1.75× 102

n = 120 18.50 0.34 - - 21.60 4.78× 102

confirms that no matter where the ground station is located, the
correctness of the approximation ratio proved above will not
be affected. In the simulation scenarios of Table IV and Fig.
6(a), the average performance of FF UFS algorithm is at most
4.8% higher than the near optimal solutions gotten from MILP
model, which is better than the theoretical approximation ratio.

In Fig. 7, we fix n = 200 and dα = 5000m, and vary the
mean values of GCs’ service time to find its impact on the
number of UAV flights required. We denoted the mean value
of GCs’ service time by m and set m ∈ [2, 12]. Given the
value m, the service time of each GC is set to be uniformly
distributed in [1, 2 ∗ m]. Apparently, with the increase of
mean value of GCs’ service time, both the FF UFS and
approAlgNoNei algorithms need more flights, because more
energy need to be taken to collect data. By contrast, FF UFS
performs better than approAlgNoNei. More specifically, for
every minute increase in the mean value of service time, the
number of flights required by FF UFS increases between 3.75
and 7.6, while that of approAlgNoNei increases between 6.35
and 10.35. It indicates that the gap between the results of
FF UFS and approAlgNoNei is related to the mean value of
GCs’ service time.
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Fig. 7. Performance of FF UFS and approAlgNoNei varying GCs’ service
time.

VII. CONCLUSION AND FUTURE WORK

In this paper, we consider data collection scenarios with
a set of GCs deployed along a road, and assign multiple
UAV flights to fly over GCs and receive video data by
60 GHz communication in flying and hovering mode. For
such scenarios, we study the UFS problem which aims to

minimize the number of UAV flights while satisfying the data
requirements of all GCs with the limitations of energy and
data storage. We prove that the UFS problem is NP-hard
and design efficient algorithms with theoretical approximation
ratios. Specifically, we first study the special case of the UFS
problem where all the cameras are in the same direction of
the ground station, and propose algorithms NF SUFS and
FF SUFS, whose approximation ratios are both proved to be 2.
Then, we extend the algorithms to a more general case with the
ground station located at an arbitrary position, and put forward
the FF UFS algorithm that achieves an approximation ratio of
3. Finally, we conduct experiments to validate the effectiveness
and efficiency of our algorithms.

In the future, we plan to investigate the UAV flight schedul-
ing problem for data collection with time windows, that is,
the data transmission of each GC must be completed within
its own time window. Moreover, we will further consider data
freshness while optimizing the scheduling of UAV flights for
data collection.
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