From Docking Station to Docking Station:
Completing Tasks in Minimum Time by
Cooperative UAV Fleets

Baixin Wan, Feng Shan”, Jianping Huang
School of Computer Science and Engineering
Southeast University, Nanjing, China
“Corresponding author. Email: shanfeng @seu.edu.cn

Abstract—As a growth engine for smart cities, the emergence
of the low-altitude economy presents significant scheduling chal-
lenges for UAV fleets that perform cooperative tasks, such as
logistics and infrastructure inspection. This paper focuses on
scheduling a fleet of cooperative, homogeneous UAVs to perform
a series of tasks distributed along a predefined route between
docking stations, with the objective of minimizing the total com-
pletion time. The complexity stems from temporal dependencies
that affect subsequent tasks and from idle-time constraints, where
early-arriving UAVs must wait for collaborators. To tackle this,
we propose a novel framework based on a geometric visualization
of the scheduling problem, introducing the concept of a ‘““skyline”
to create a canonical representation of resource availability over
time. A provably optimal schedule is found based on this skyline
concept, and computational efficiency heuristics that incorporate
a lookahead mechanism is proposed for large-scale, practical
applications. Comprehensive simulations demonstrate that our
skyline-based methods consistently and significantly outperform
conventional baseline algorithms in solution quality.

Index Terms—Multi-UAYV, Cooperative Scheduling, Completion
Time Minimization, Resource-Constrained Scheduling, Dynamic
Programming, Heuristics.

I. INTRODUCTION

The low-altitude economy, driven by Unmanned Aerial
Vehicles (UAVs), is emerging as a new driver of growth [1].
Automated UAV docking stations (e.g. DJI’s Dock [2]) enable
drones to land, recharge, and resume missions autonomously,
significantly enhancing their operational endurance. Conse-
quently, UAV docking stations are becoming essential infras-
tructures that support large-scale, automated UAV operations
within the low-altitude economy [3], which demands new
forms of elastic and collaborative intelligence [4]. Although
UAVs are agile and cost-effective in dense urban environ-
ments [5], their significant limitations in payload, energy,
and onboard processing make a single UAV insufficient for
complex tasks [6], [4]. As a result, swarm collaboration
becomes essential, where a fleet of UAVs is coordinated to
accomplish missions beyond the capability of any individual
agent. For example, a group of water-carrying firefighting
drones can simultaneously spray water at a tall building to
extinguish fires; multiple loudspeaker drones may be deployed
to manage emergency events and broadcast important mes-
sages to crowds; and a set of base-station drones can provide
communication support for a large number of ground devices

—— Flight route

Fig. 1: Scheduling a fleet of cooperative, homogeneous UAVs to
complete a series of tasks distributed along a predefined route, with
the goal of minimizing the completion time of all tasks. Any UAV
can only travel from one docking station to another without returning,
and must execute tasks sequentially along its path. Each task requires
a specific number of UAVs to be simultaneously available for a given
duration, which may cause early-arriving UAVs to remain idle while
waiting for collaborators.

during public gatherings. In the literature, such collaborative
missions are actively studied as complex scheduling chal-
lenges, such as UAV service provisioning [7] or correlation-
aware task offloading [8]. Therefore, this paper focuses on
collaboration tasks that require a number of UAVs to work
together.

This paper addresses a crucial problem in this context:
scheduling a fleet of cooperative, homogeneous UAVs to per-
form a series of tasks distributed along a predefined, energy-
efficient route [9], as illustrated in Fig. 1. The route begins
at one automated UAV docking station and ends at another,
which is a part of a larger smart city UAV scheduling frame-
work discussed in our other work [10]. Each UAV can perform
multiple tasks, while each task requires a certain number of
UAVs to cooperate over a specified duration. Therefore, the
central objective is to coordinate UAV movements and task
assignments so that all tasks are completed in the minimum
possible time.

Minimizing the completion time of all tasks through coor-
dinated UAV fleet movements and task assignments is highly
challenging. First, a UAV can only travel from one docking
station to another without returning, and must execute tasks
sequentially along its path. Since each task requires a certain
amount of time, its execution introduces temporal dependen-
cies that affect subsequent tasks. Second, each task requires
a specific number of UAVs to be simultaneously available
for a given duration. This may cause early-arriving UAVs to
remain idle while waiting for collaborators, thus how to reduce
such idle time is challenging in considering the UAV-to-task
assignments. Finally, the search space of possible UAV-to-task
assignments grows exponentially with the number of tasks and
UAVs, rendering brute-force or exhaustive search approaches
computationally infeasible [11].

Existing research on multi-agent task allocation, including
coalition formation frameworks [12], [13], [14], [15], primar-
ily focuses on high-level resource assignment. In contrast,
the problem investigated in this paper emphasizes practical
challenges in the low-altitude economy, where a fleet of
cooperative UAVs travels from one docking station to another.
These challenges include temporal dependencies arising from
sequential task execution along the route and idle time caused
by waiting for collaborators. This shift in focus calls for a new
and specialized methodology.

To this end, we develop a novel scheduling method built
upon a geometric visualization of the problem space. Our main
contributions are threefold:

o This paper formulates a novel scheduling problem that
aims to minimize the completion time of all tasks by a
cooperative UAV fleet traveling from one docking station
to another. We further provide an equivalent problem
transformation that decouples UAV movements from task
assignments. This simplification allows us to focus on
UAV-to-task assignments without any loss of optimality.

« This paper introduces a novel geometric concept, skyline,
to represent UAV availability. Building on this, we de-
velop a provably optimal scheduling algorithm, Skyline-
Based Exact Dynamic Programming (S-EDP). To address
large-scale instances, we further propose skyline-inspired
heuristics with improved computational efficiency that
incorporate a lookahead mechanism.

o We design and conduct a comprehensive set of simula-
tion experiments to validate our framework. The results,
evaluated across various task profiles and problem scales,
demonstrate significant and consistent performance gains
for our proposed algorithms over conventional scheduling
heuristics, reducing the mission completion time by up to
approximately 10% in our test cases.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work. Section III details the system
model and problem formulation. Section V presents our S-EDP
and its underlying pruning strategies. Section VI introduces
the heuristic algorithms for large-scale problems. Section VII
provides a comprehensive performance evaluation, and Sec-

tion VIII concludes the paper.

II. RELATED WORK
A. Multi-UAV Task Allocation and Coalition Formation

In the literature, related work on coalition formation shares
similarities with our study in terms of theoretical framework.
Coalition formation [16] is a classic paradigm in multi-
agent systems that investigates how autonomous agents form
collaborative groups to execute tasks beyond the capabil-
ity of any single agent. The literature presents diverse ap-
proaches, including cost-based distributed algorithms [13],
[17], utility-driven models with resource constraints [14], [18],
and more recent game-theoretic formulations tailored for UAV
networks [19], [15]. However, a prevailing assumption in
this body of work is the emphasis on determining which
agents should form a coalition, while the operational logistics
of task execution are often oversimplified. Such abstraction
overlooks the stringent constraints of real-world applications
where operations are confined to predefined corridors. Our
work addresses this gap by explicitly incorporating temporal
dependencies from sequential task execution and idle time due
to waiting for collaborators.

B. Two-dimensional Strip Packing

When visualized geometrically, our scheduling problem is
visually similar to the two-dimensional strip packing prob-
lem [20]. This connection inspired the design of our baseline
algorithms; for instance, the best-fit strategy [20], [21] we
adopt is a classic heuristic originating from this field. How-
ever, the similarity is limited, as fundamental differences in
core constraints prevent the direct application of traditional
packing algorithms [22]. Classic packing problems deal with
indivisible, rigid rectangles that can be placed in arbitrary
order. In contrast, our task-rectangles are “divisible” along the
UAV index axis and, more importantly, UAVs must execute
tasks sequentially, introducing temporal dependencies absent
in packing problems. Therefore, a specialized scheduling
framework is required.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a set of M UAVs, denoted by U =
{u1,ua,...,up}, which cooperatively execute a sequence of
n tasks, T = {t1,t2,...,t,}, distributed in a predefined and
unidirectional route. Each task ¢; € T is characterized by a
tuple (d;, m;), where d; > 0 is its execution duration and
m; € {1,..., M} is the number of UAVs required. The flight
time for a UAV to reposition from the location of task ¢; to
that of ¢; is denoted by f(¢;,¢;). A schedule P assigns to each
UAV wuy € U an ordered sequence of tasks to execute. This
assignment must ensure that for each task ¢; € T, the set of
assigned UAVs, denoted by U(t;) C U, satisfies its resource
requirement |U (¢;)| = m,. Also, based on this assignment, the
schedule determines a feasible start time b(¢;) and completion
time ¢(t;) for each task ¢;.

TABLE I: Key Notation for Problem Definition

Notation Definition

u The set of M UAVs, {u1,...,un}.

T The set of n tasks, 7 = {¢1,...,tn}.

f(ti t) The flight time from task ¢; to ;.

d; The execution duration of task ¢;.

m; The number of UAVs required by task ;.

Ul(t;) The set of UAVs from I assigned to task ;.

b(t;) The start time of execution assigned to task ¢;.

c(t;) The completion time of task ¢;, where c(¢;) = b(¢;) +d;.
Cmaz(P) The completion time of a schedule P, max;{c(t;)}.

In our problem context, any feasible schedule must adhere to
the ordering constraint where UAVs fly along a unidirectional
path, which establishes a fixed traversal sequence for all tasks
based on their location. Thus, any single UAV must execute
its assigned tasks strictly in this predefined order. This leads
to the following constraint for any pair of tasks, ¢, and ¢;, that
share a common UAV:

c(ts) + f(tist;) < b(ty), Vi, t; € T,i < J,U(t:) NU(t;) # 0
(D
In addition, the task atomicity constraint, motivated by real-
world applications such as aerial surveillance or agricultural
spraying where tasks are inherently continuous and uninter-
ruptible, is formalized as follows: once a task ¢; begins, the
assigned set of UAVs U(t;) remains fixed, with all UAVs
starting and completing synchronously at b(t;) and ¢(t;). This
can be expressed mathematically as:

c(t;) = bt;) + di, Vt; € T, Vuy, € U(t;).)

A key assumption of this model is that all UAVs are ho-
mogeneous, i.e., functionally identical. This reflects practical
scenarios such as aerial inspection, surveillance, and logistics,
where a uniform fleet simplifies maintenance and scheduling
operations.

B. Problem Formulation

Based on the system model, the SR-MUCSP is formally
defined as follows:

Definition 1 (SR-MUCSP). Given a set of M homogeneous
UAVs U, a sequence of n tasks T, the Single-Route Multi-UAV
Cooperative Scheduling Problem (SR-MUCSP) aims to find an
optimal schedule P. This schedule determines the sequence
of tasks assigned to each UAV, such that the completion
time Cona.(P) is minimized, while the ordering constraint in
Eq. (1) and task atomicity constraint in Eq. (2) are satisfied.

IV. PROBLEM TRANSFORMATION

This section transforms the Problem SR-MUCSP into an
equivalent logical scheduling problem without considering
UAVs’ movement. It then introduces a geometric visualization
to visualize the problem, laying the groundwork for the
algorithm design that follows.

A. Decoupling of Movement Cost

To simplify the model, we decouple the physical flight
cost from the scheduling problem. This simplification is
based on the optimal flight mode of UAVs. As demon-
strated by real-world flight experiments, a practical, energy-
optimal flight mode defines the optimal cruise speeds, acceler-
ation/deceleration, and turning strategies to minimize energy
consumption for a given route [9]. In our SR-MUCSP, it is
therefore reasonable to posit that all UAVs adopt this same
optimal flight mode to maximize system-wide efficiency. This
results in the movement cost f(¢,,%,) being the same for any
UAV. This decoupling is also robust: even if individual UAV
movement costs vary slightly in practice (e.g., due to wind or
battery degradation), the assignment plan P derived from our
logical model remains highly effective.

Based on this, we can abstract this complex but identical
flight behavior into an equivalent average optimal speed v.
Therefore, the time required to cover the entire predefined
route of total length £, denoted by the constant 7 = L/v, is
identical for every UAV. We can express the total time a UAV
uy, takes to complete its duties in the physical world, py, as
the sum of its logical completion time [;, (time spent purely
on tasks and waiting) and the constant route time 7.

P =l + 7. 3)

The overall physical completion time, C?, ., is the maximum
of these individual completion times. Since 7 is a constant

shared by all UAVs, it can be factored out of the maximization:
p = = = . 5
Chnas = max{pg} = max{ly + 7} = max{ly} + 7. (4)

By defining the logical completion time as C! = =
maxgey{lk}, we arrive at the direct relationship:

Cﬁlafl‘ = CTZYLGQC + T. (5)

This derivation proves that a schedule minimizing the logical
completion time also minimizes the physical completion time.
We can therefore focus on solving the simpler problem, which
we term the Logical SR-MUCSP (LSR-MUCSP), where times
for inter-task movement are effectively considered zero. The
constant 7 can simply be added to the final result.

B. Geometric Visualization and State Representation

To facilitate the analysis and solution of the LSR-MUCSP,
we introduce a geometric visualization. The scheduling pro-
cess is visualized on a two-dimensional scheduling strip,
where the horizontal axis represents time and the vertical axis
represents the M available UAV resources (Fig. 2 Left). Within
this visualization, each task ¢; corresponds to a composite
rectangle with a width of d; and a total height of m;. This
composite rectangle is itself composed of m; left-aligned,
unit-height rectangles, which can be placed non-contiguously
along the UAV Index axis. A feasible schedule for the LSR-
MUCSTP is thus visualized as a non-overlapping placement of
these composite rectangles within the strip. The objective, in

this geometric context, is to minimize the maximum rightmost
coordinate of any placed rectangle.

w N o A -

123

LI R N

UAV Index
UAV Index

Completion Completion
Time Time

0123 456 7 8 0123 456 7 8
Time Axis Time Axis

Fig. 2: Geometric visualization of a feasible schedule and its canon-
ical visualization. The schedule is visualized on a 2D strip where
the x-axis denotes time and the y-axis denotes the UAV resources
(indexed 1 to M). Each rectangle corresponds to a task t. Critically,
UAVs are not sorted by fixed IDs but are dynamically re-ordered
by their earliest available times. This process forms the unique,
monotonic profile S (highlighted in green) that defines the Skyline
of the scheduling state.

Given the fixed task sequence 7, a natural approach is a
sequential process that schedules tasks one by one. In this
process, the partial schedule for the first ¢ tasks forms a
scheduling state, which we formally denote by X;. This state
serves as the basis for all subsequent scheduling decisions.
To ensure a unique and standardized representation for any
scheduling state, we introduce a canonical visualization rule:
on the UAV Index axis, UAVs are not sorted by their fixed
IDs but are dynamically ordered by their earliest available
times, Iy, in ascending order. This convention ensures that the
boundary of available resources forms a unique, monotonically
non-decreasing profile, which we term the skyline (Fig. 2
Right).

Definition 2 (Skyline). The skyline of a scheduling state 3,
denoted by S(%;), is a vector of the M earliest available
times of the UAVs, sorted in ascending order: S(¥;) =
(81,82,---,80M), where s1 < s9 < -+ < spp.

A scheduling state X; is thus fully characterized by its
skyline S(¥;) and its task assignment history. The skyline
provides a complete summary of resource availability, serving
as the basis for all forward-looking scheduling decisions.
The assignment history is used only to reconstruct the final
schedule after the search is complete. Due to the homogeneity
of the UAVs, scheduling decisions can be made based solely
on the skyline vector, abstracting away the specific UAV IDs.
This abstraction is fundamental to the state-space reduction
techniques that follow.

V. FRAMEWORK FOR OPTIMAL SCHEDULING

The previous section established a geometric framework
for the LSR-MUCSP, the logical equivalent of the original
problem. Building on this foundation, this section introduces
pruning techniques, namely state dominance and candidate
placement points, to construct an efficient state-space search
framework. Several scheduling algorithms are subsequently
designed based on this framework.

Layerg

Layer;

©
©
Layer,

(2) ©
IORORONONOROR

e @ OO OO @-

Fig. 3: The state transition graph, which models the scheduling
problem within a dynamic programming framework. The graph is
structured as a layered tree, where each node X; at Layer ¢ represents
a possible scheduling state after the first ¢ tasks have been placed. A
directed edge from a state in Layer ¢ — 1 to a new state in Layer ¢
represents a specific placement decision for task ¢;. The entire search
process aims to find the optimal state in Layer n.

A. Framework: The State Transition Graph

All subsequent algorithms are built upon a state transition
graph, a concept rooted in dynamic programming. This graph
is a layered free with n 4 1 layers, corresponding to the task
sequence 7 (Fig. 3). The nodes at layer ¢ are all possible
scheduling states {X;} after scheduling the first ¢ tasks, with
Layer O containing the single root node . Each state is
characterized by its skyline S(3;) and assignment history. A
directed edge connects a parent state X; to a child state >, 1,
representing a step placement for ¢; on the scheduling state of
the parent node.

An exhaustive search of this state-space tree is computa-
tionally infeasible for two main reasons. First, the number of
outgoing edges from any state is effectively infinite, as a task
can be placed at countless positions on the scheduling strip.
Second, the tree would contain immense redundancy, because
different scheduling histories (i.e., different nodes) can lead to
equivalent states with identical skylines. Pruning strategies are
therefore essential to make the search tractable. The following
subsections introduce techniques to eliminate these redundant
states and to reduce the number of placements considered,
while preserving optimality.

B. Pruning Strategy I: Skyline-Based State Dominance

Our first pruning strategy eliminates redundant states within
the same layer of the search tree. Due to the homogeneity
of the UAVs, the specific IDs of the UAVs assigned to a
task are irrelevant for future decisions. Only their availability
times, captured by the skyline. Therefore, whether one state
is superior to another can be determined purely by comparing
their skylines. This is formalized through a dominance relation
shown in Fig. 4.

Definition 3 (State Dominance). Given two states >4 and
Yp with skylines S(X4) = (a1,...,ap) and S(Xp) =

(o) BNV, | X w N
n
M
2

Skyline Index

01 2 3 4 5 6 7
Time Axis

8 9 10 M

Fig. 4: The State Dominance concept, a key state-space pruning
strategy. The figure compares skylines of two states, S(X4) and
S(XB). X4 is said to dominate X (denoted ¥4 < X p) because
each of its availability times is less than or equal to the corresponding
time in X p. Consequently, any dominanted state, such as that of ¥ 5,
can be safely pruned without sacrificing optimality, as long as states
prepare to schedule the same task.

(b1,...,by) sorted in ascending order, we say that Y4
dominates Y., denoted ¥4 = X, if and only if a; < b; for
all j € {1,..., M}, a vector relationship which we denote as
S(5a) < S(Sp).

Geometrically, a dominating state ¥4 offers at least as
much, and potentially more, available area for future tasks
than X p. The following stronger lemma provides a robust
foundation for pruning.

Lemma 1 (Preservation of Dominance). Let > 4 and g be
two states at the same layer i — 1. If ¥ 4 = Xp, then for any
child state ¥'5 of L at layer i, there exists a corresponding
child state ¥'y of ¥ 4 such that &'y dominates ¥'5.

Proof. Let S(¥4) = (a1,...,apy) and S(Ep) =
(b1,...,bar). The premise ¥4 =< Xp implies a; < b; for
all j e {1,...,M}.

Consider any child state X5 generated by placing task ¢;
on a set of m; rows (indices) K C {1,..., M} of the skyline
S(Xp). Let the start time be s, = max;cx{b;}. The new
availability times for the rows in K become s; + d;.

We construct X/, by placing ¢; on the same set of rows
K of S(X4). The resulting start time is s, = max;cx{a;}.
Since a; < b; for all j, it follows that s, < sp.

Let us compare the multisets of availability times that form
the new skylines.

o For any unselected row j ¢ K, we have aj <b;.
o For any selected row j € K, the new time is s, + d;,
which is less than or equal to s, + d;.
Every value in the multiset for state A is less than or equal to a
corresponding value in the multiset for state B. This element-
wise dominance is preserved after sorting to form the new
skylines. Thus, 3/, < 3. O

If a state X4 dominates another state X p at the same
layer, ¥ p can be safely pruned from the search space. This
is because any optimal schedule reachable from Yp can
be matched or improved upon by a corresponding schedule

reachable from the state ¥ 4. This dramatically reduces the
number of states to be explored at each layer.

C. Pruning Strategy II: Reduction of Placement Positions

While state dominance prunes the number of states (nodes),
it does not address the infinite number of actions (edges)
from each state. For any given state >;, placing the next task
t;+1 offers infinite possibilities due to the continuous nature
of start times. This section introduces a strategy to reduce
these infinite placements to a small, finite set of dominant
candidates (Fig. 5). A placement of task ¢, on the skyline
S(%;) = (s1,...,8n) is defined by the chosen set of m; 1
row indices, K C {1,..., M}. Let ;1 be the resulting child
state, and we have the following two properties.

Optimality of Left-Alignment. The earliest possible start
time for a placement on a set of rows K is s*(t;41) =
maxgecx{Sp}. Any other placement with a start time
§'(tiz1) > s*(t;+1) is non-left-aligned. Let X;;; be the
state generated by the left-aligned placement and X; ; be the
state from the non-left-aligned placement. It is evident that
S(Eit1) = S(Xj,;), as the latter unnecessarily delays the
new availability times. Thus, we only need to consider left-
aligned placements.

Optimality of Downward-Alignment. For any given left-
aligned placement using a set of rows K, a “downward-swap”
can be applied. This involves replacing a selected row a € K
with an unselected row b ¢ K where a < b, provided the start
time does not increase. As proven in Lemma 1, such a swap
results in a new, dominating skyline because our skyline is
sorted in ascending order (a < b = s, < sp). A placement
that is irreducible to such swaps must consist of a contiguous
block of rows starting at a “corner”. Such a placement is
downward-aligned and dominates any non-contiguous or non-
corner placement.

1| | | ¢
2 | -
3 CcPP; r P t
3 Unschedulable
T4
£ Region ¢
Q5 CPP,
E
» 6 CPPy A\
o1 2 3 4 5 6 7 8 9 10 11
Time Axis

Fig. 5: Mechanism for reducing an arbitrary placement to a Candidate
Placement Point (CPP). The figure demonstrates how any arbitrary
placement of task t is transformed into an optimal placement at a
CPP (green circles) via a two-step process: Left-Alignment(shifting
the task to the skyline boundary) and Downward-Alignment(moving
it to higher-indexed UAVs without delaying its start time). This
reduction is critical because a placement at a CPP is proven to yield
a dominating skyline. It allows the algorithm to evaluate only the
finite set of CPPs, reducing the search space from infinite to a few
candidates without loss of optimality.

Layer [SelectionRegion
Layer;
Layers

Layers

Layer,

OO0 00000

Fig. 6: The state transition and selection graph of S-EDP. The
”Selection Region” (gray box) represents a set of candidate states
from which only one is chosen to advance while the rest are pruned.
In this final step of S-EDP, the algorithm selects the single state
(highlighted in green) that yields the minimum completion time
(Cmax)- Since the search terminates at this final layer, the selected
state’s schedule represents the globally optimal solution.

Definition 4 (Candidate Placement Point, CPP). Formally,
a position for placing task ti1 on the skyline S(X;) =
(s1,...,8m) is a Candidate Placement Point (CPP) if and
only if the set of m;11 row indices it occupies, K, forms a
contiguous block {j,j—1,...,j—m;y1+1} where the starting
index j satisfies the “corner” condition: s; < sj41 or j=
M,and the start time of the task b(t;11) = maxgex{Sk}

These two properties prove that for any possible placement,
there exists a CPP that generates a dominating or equal skyline.
Therefore, the search for a subsequent state can be restricted
to considering only placements on CPPs. This reduces the
infinite set of possible edges from each state to a finite set of at
most O(M) dominant candidates, making the search tractable
without loss of optimality.

D. Skyline-Based Exact DP

Skyline-Based Exact DP (S-EDP) is a direct implementation
of the state-space search framework, as outlined in Algo-
rithm 1. It constructs the pruned State Transition Graph layer
by layer to find a globally optimal solution (Fig. 6). The core
of this dynamic programming approach is captured by the
following state transition equation. This equation describes the
transition process for P;, the set of skylines corresponding to
the mutually non-dominating states after scheduling the first ¢
tasks:

P; CS; and VSa,Sb c Pi, (a 7& b) — S, ﬁ Sp. (6)
s - {Usa»il (UjestSort((vr, ez, on)}) s 021
{00, 0)1xarhs i=0,

%)

where the set S; generated at layer ¢ is pruned to eliminate
dominated states, resulting in the non-dominated set P;. This
set P; then serves as the basis for generating the next layer’s
full set, S;11. The set J in the state transition equation
contains the starting row indices of all Candidate Placement
Points (CPPs) and is defined as follows:

TJ={jeZ|(m<j<M)N(j=MVs;<sju1)} (8

Algorithm 1 Skyline-Based Exact DP (S-EDP)

Input: Tasks 7 = {¢1,...,tn}, UAV number M.
Output: An optimal scheduling state ;a1

Let Po, P1,...,Pn be sets of states for each layer.
Po {EO};
for i =1 ton do

Si < 0; // Candidate states for the current layer

for Xparent € Pi—1 do
CPPs + FindCPPs(S(Xparent), ti);
for cpp € CPPs do
Yehita < PlaceTask(EXparent, i, cpp);
Si.add(Zchita);
end for
end for
Pi + Prune(S;);
end for
Y final < argminsep, {Cmaz (X)};
return Xinqi-

Finally, (vi,...,vpr) represents the new, unsorted skyline
vector formed after placing a task. Each component vy is
defined by:

J e .
max {sp}+d;, ifj—m;+1<k<
pomax {sp}ddi, ifj-mitl<k<j ©)

Sk, otherwise.

Vi =

1) Time Complexity Analysis: The time complexity of S-
EDP is primarily driven by the total number of states generated
during the search. Our Candidate Placement Positions (CPP)
pruning strategy is critical here, as it restricts task placements
to contiguous blocks of UAVs. This limits the branching factor
at any given state for task ¢; to exactly M — m; + 1, which
is strictly upper-bounded by M. As the search proceeds for
n layers, this establishes a theoretical time complexity upper
bound of O(M™).

In practice, the actual runtime is substantially lower than this
pessimistic bound for two main reasons. First, the branching
factor is often much smaller than M, reaching this maximum
only for single-UAV tasks (m; = 1). Second, and more
critically, our skyline dominance pruning strategy eliminates
a large, though unpredictable, number of dominated states at
each layer, drastically reducing the effective search space.

2) Space Complexity Analysis: The space complexity is
determined by the total number of states stored across all n
layers of the search graph. The size of the set of mutually
non-dominating states at any single layer, W, = max; |P;],
is theoretically bounded by the length of the longest antichain
in the state space. By analogy to Sperner’s theorem [23], this
theoretical maximum grows exponentially with the number of
UAVs M, and can be represented by the central binomial
coefficient (Ll\j\f//l2 J)' This leads to a pessimistic theoretical

space complexity bound of O(n - (L A%? J))

However, this upper bound is rarely approached in practice.
The combination of our two pruning strategies—Candidate
Placement Positions and state dominance—ensures that the
effective number of states is typically much smaller than this
theoretical maximum. Therefore, the actual space requirement

Layery

[SelectionRegion

O
toen O OO O]
ofe)e

Layerpiq

e SOOI OO

Fig. 7: The state transition and selection graph of S-SDP.The task
sequence is divided into segments of a fixed size h. At each segment
boundary (e.g., Layer h), a ”Selection Region” is formed over the
candidate states. Only a single state with the best local completion
time(highlighted in green) is selected to initiate the search for the next
segment, while all other states (red) are pruned. This inter-segment
pruning strategy sacrifices guaranteed optimality for computational
tractability.

is often significantly lower, though its precise magnitude is
data-dependent and unpredictable a priori.

VI. HEURISTIC ALGORITHMS

S-EDP guarantees optimality but is computationally infea-
sible for large-scale problems. This section presents three
heuristic algorithms designed to find high-quality solutions
efficiently: a segmented dynamic programming approach with
a fixed lookahead, a simple greedy algorithm, and a more
sophisticated heuristic DP with a dynamic lookahead mecha-
nism.

A. Skyline-Based Segmented DP

S-EDP’s exponential complexity renders it infeasible for
large-scale problems. A practical approach is Skyline-Based
Segmented DP (S-SDP), outlined in Algorithm 2, which
divides the task sequence into segments of a fixed size, a,
and applies S-EDP to each one. To prevent the exponential
growth of states, an aggressive pruning step is performed at
each segment boundary (Fig. 7): only a single state (typically
the one with the minimum completion time) is selected to
serve as the sole starting point for the next segment. This
greedy and inter-segment pruning sacrifices global optimality
for tractability. If the task sequence is divided into [n/a]
segments of size at most a, the algorithm provides an ([n/a])-
approximation. The complexity is also significantly reduced;
the time complexity becomes O(% - (M®)), while the space
complexity is reduced to that of a single segment of size a.
However, a key limitation of this greedy selection is that it
ignores the ‘“shape” of the skyline, which can compromise
resource availability for subsequent segments and motivates
the design of more advanced heuristics.

B. Skyline-Based Greedy

Skyline-Based Greedy (S-G) algorithm is the most straight-
forward heuristic. At each step ¢, it schedules the next task
t; by selecting the CPP that results in the earliest possible
completion time. This can be viewed as a special case of
S-SDP where the segment length is one (a = 1). Although

Algorithm 2 Skyline-Based Segmented DP (S-SDP)

Input: Tasks 7 = {t1,...,tn}, UAV number M, Segment size a.
Output: A final scheduling state X ¢inqi.
14 0;
Pstart — {EO};
while : < n do
Po < Pstart; [/ Initialize the first layer of the segment’s DP
k <= 0; // Counter for tasks within the current segment
while K <acand i+ k+ 1 <n do
k+—k+1;
Sy 0;
fOl‘ Eparent € Pk—l dO
CPPs < FindCPPs(S(Xparent), titk);
for cpp € CPPs do
Yehitd < PlaceTask(Xparent, titk, CPD);
Sk.add(Zcnita);
end for
end for
Pr. < Prune(Si);
end while
/I Inter-segment pruning: select only the best state to proceed
Ypest ¢ argminsep, {Cmaec(X)};
Psta’r‘t — {Ebest};
i<+ i+ k;
end while
Z:final <~ Pstart~get_ﬁr5t();
return Xyinqi.

/I The final remaining state

presented as a offline method, the algorithm is inherently an
Online Algorithm, making it well-suited for dynamic task
arrivals. S-G directly maps to an execution pattern where the
earliest arriving UAVs are prioritized for the task. Due to its
low time complexity, approximately O(n - M), and minimal
memory use, this algorithm is effective for rapidly generating
solutions.

C. Skyline-Based Heuristic DP

To overcome the short-sightedness of the greedy approach,
we designed Skyline-Based Heuristic DP (S-HDP), as outlined
in Algorithm 3. This algorithm uses a lookahead window of
SiZ€ @y to build a small DP state-space tree. Instead of
greedily committing to a single step, it chooses the most
promising intermediate state from the entire lookahead tree
based on a holistic evaluation function, Score(X) (Fig. 8).
This score is a weighted sum of three metrics: completion
time increment Mac,,,, (ACphaz), Waste rate Mqse (the
blank area included in the skyline divided by the area of the
skyline), and profile quality M,,ofie (S(2)’s Coefficient of
Variation).

To determine a robust and high-performing weight config-
uration, we conducted comprehensive computational simula-
tions (Fig. 9) across three primary scenarios. These scenarios
are generated by sampling from three distinct task types, where
for each task t;, its duration d; and required UAVs m; are
drawn from uniform distributions:

o Normal tasks (tnormar): d; ~ U(1,0.75M) and m; ~
U(1,0.75M).

o Time-dominant tasks (¢rs): d; ~ U(0.75M, M) and
m; ~ U(1,0.5M).

Algorithm 3 Skyline-Based Heuristic DP (S-HDP)

Input: Tasks 7 = {t1,...,tn}, UAV number M, Lookahead size
Amaz, Weights W,
Output: A final scheduling state > fipnq;.
Ecurrent — EO;
14— 0; // Index of the next task to be scheduled globally
while ¢ < n do
a < min(amaz,n—1); // Determine lookahead window size
// Build a local DP table for the lookahead window
Let DP_layerso, ..., DP_layers, be sets of states.
DP_layerso < {Scurrent };
for £ =1 to a do
Sgend 0
for Xparent € DP_layersiy—1 do
CPPs <+ FindCPPs(S(Zparent), titk);
for cpp € CPPs do
Yenita < PlaceTask(Zparent, Li+k, pp);
Sﬁ“”d.add(zchild);
end for
end for
DP_layersy, + Prune(Sg2™%);
end for
/I Final segment: greedily minimize completion time
if (1 + a == n) then
Ypest arg minEEDP_layersa {Cmaw (E)}s
kconsumed —a;
else // Intermediate segment: use holistic scoring function
best_score <+ oo;
for k=1 to a do
for ¥ € DP_layersy, do
if Score(X, W) < best_score then
best_score < Score(3, W);
Z:best — Zs
kconsu'med — k;
end if
end for
end for
end if
Ecur'rsnt — Ebest;
141+ kconsumed;
end while
return Xcurrent.

o Resource-dominant tasks (tgs): d; ~ U(1,0.5M) and
m; ~ U(0.75M, M).

The three scenarios are then composed as follows: the TS
scenario contains 75% trs and 25% tpormar tasks; the BS
scenario consists entirely of t,oma tasks; and the RS scenario
contains 75% tgrs and 25% tyormar tasks.

For each scenario, the weights (We,, ., Wiaste, Whprofile)
were varied from 0 to 1 in steps of 0.05, subject to their sum
being 1. To ensure statistical reliability, 128 independent runs
were performed for every valid configuration at each problem
scale. To evaluate the quality of each configuration, we define
its "Performance’ as the average final completion time (C'y,qz)
achieved across all runs, which directly aligns itself with
the paper’s primary goal of minimizing C,,.,. The results
showed remarkable consistency, leading us to adopt the final
configuration of (0.10,0.85,0.05). This configuration reveals
that myopically pursuing completion time is detrimental, while
minimizing wasted space is the dominant factor for high-

Layersn

Fig. 8: The state transition and selection graph of S-HDP. The figure
illustrates two consecutive selection steps. In the first step (green
and red states), the algorithm explores all layers in a lookahead
”Selection Region” of height h. A holistic scoring function selects
the best state (green). The search then advances from this chosen
state, initiating a new lookahead ”Selection Region” (blue and purple
states), from which the next state is selected in the same manner. This
comprehensive, multi-step evaluation avoids the shortsightedness of
simpler S-G and S-SDP.

100 Wrofite BS Wen

00

Wwas te RS

Performance WG,, - TS meﬁla

Fig. 9: Tuning the weights of the Heuristic DP scoring function
via simulation. Each ternary plot shows the solution quality (color-
coded Performance) across different weightings of the three metrics:
completion time (Wagc,,, ..), waste rate (Wo,qste), and profile quality
(Wprofite). Here, Performance indicates the average Cnar across
all experiments and problem scales for given weights. The experiment
is performed on three distinct scenarios to ensure robustness: TS, BS,
and RS. Across all scenarios, the highest-performing configurations
(yellow areas) consistently prioritize minimizing the waste rate,
revealing it as the most critical factor for achieving a high-quality
schedule.

quality solutions. When the algorithm processes the final
segment of tasks, it dynamically switches its objective to solely
minimizing the completion time.

VII. SIMULATIONS

The preceding sections established a theoretical framework
for the LSR-MUCSP and designed a series of scheduling
algorithms. This section aims to comprehensively evaluate the
practical performance of these algorithms through computa-
tional simulations. The simulations compare our S-EDP, S-
SDP, S-G and S-HDP against two baseline algorithms, examin-
ing both solution quality (completion time) and computational
efficiency (runtime).

102
x
g
&

0.98

—eo— RR —=— BF S-G —e— S-SDP —¥— S-HDP —e— S-EDP
108
5 . \/\/\ 400 w 6000
R Eroofo—a—o o o of E E £
T Q N 090 /’\/\\
1] =" 090 ot 0
C 7 % 5 1 n [S S S R P S S T S SR 7 % 5 1o 7 & s o
n n n n n n
(@) RS Cryaz (b) RS Runtime (¢) BS Crnax (d) BS Runtime) TS Cmaz (f) TS Runtime

Fig. 10: Performance comparison in small-scale scenarios (n < 11). The y-axis represents the average completion time (Cmax) and runtime,

with all values normalized by the results of BE.

—e— RR —=— BF S-G —— S-SDP —¥— S-HDP
110 40 00
10—t — T s - p{t——— T S 4
100 g/”’é\/\' . 0 — [S A S S — 150 ,,/
» 101 2 x g X g ,/‘7
s Al s £ & 098 g
£ g s € £ 20 g S 100
O ool 25 O 1 E Q o9 E]
10 oo 5
2 e
O RS —— i —t—t—p—s—a s {E—F—F—F+—¢ % R e— 092 4 ¥——— 0] 4—t—ot—o—0n—us
W 10 1o 160 10 20 W e 1o 10 o am W e o 0 w0 2m0 W B0 0 1o w0 20 W 10 1o 160 1o 20 W B0 10 160 10 20
n n n n n n
(@) RS Chax (b) RS Runtime (¢) BS Crax (d) BS Runtime () TS Crmaz (f) TS Runtime

Fig. 11: Performance comparison in large-scale scenarios (n > 100). The y-axis represents the average completion time (Cax) and runtime,
normalized by BF. S-EDP is excluded due to its computational infeasibility at this scale.

A. Simulation Setup

All algorithms were implemented in Rust and executed
on a computer with an AMD Ryzen 9 7945HX CPU and
16GB of RAM. The evaluation is divided into small-scale and
large-scale scenarios. We compare our proposed algorithms
(S-EDP, S-SDP (a = 5), S-G, and S-HDP (Gz = O,
W = (0.10,0.85,0.05))) against two baseline methods that
do not use the skyline framework:

o Round-Robin RR [24]: A classic scheduling algorithm
representing a load-balancing approach. This algorithm
implements a cyclic scheduling policy for fair workload
distribution. It assigns task t; to a contiguous block of
m; UAVs selected by a sequential pointer, setting the
start time to the maximum availability among them.

o Best-Fit BF [20], [21], [17]: Inspired by the two-
dimensional strip packing and the game-theoretic auction
mechanism known as the Contract Net Protocol (CNP),
BF is a classic and adaptive greedy heuristic. Its logic is
equivalent to an auction-based game-theoretic mecha-
nism. In this model, the task ¢; acts as the “auctioneer”
seeking to be scheduled. The M — m; + 1 contiguous
UAV blocks act as “bidders,” each submitting a bid”
corresponding to the earliest start time it can offer. The
task ¢; is then awarded to the bidder that submitted the
winning bid (i.e., earliest start time).

The performance of these algorithms is evaluated across
three distinct scenarios designed to test their robustness: TS,
BS, and RS. The detailed characteristics and parameter gen-
eration for these scenarios are identical to those described in
Subsection VI-C.

B. Results and Analysis

Our simulation results, presented for small-scale (n < 11) in
Fig. 10 and large-scale (n > 100) problems in Fig. 11, validate
our proposed framework. The primary and most consistent
finding is that all skyline-based algorithms (S-G, S-SDP, and
S-HDP) demonstrate a significant and robust performance
advantage in solution quality (Cp,ax) over the conventional
RR and BF baselines across all scenarios. This fundamental
advantage is starkly highlighted by the fact that even the
simplest online greedy implementation, S-G, yields better
solutions than the adaptive BF heuristic, underscoring the
power of the skyline representation itself.

Small-Scale Scenarios. In tests where the true optimum is
known via S-EDP, the performance hierarchy within the sky-
line framework and the near-optimality of S-HDP are evident.
As heuristic sophistication increases from S-G to S-SDP and
finally to S-HDP, the solution quality consistently improves.
S-HDP distinguishes itself by achieving an average completion
time that deviates less than 1% from the optimal results
provided by S-EDP. The runtime analysis confirms S-EDP’s
exponential complexity, motivating the need for heuristics. In
contrast, all heuristics exhibit excellent efficiency, with the
substantial gains in solution quality achieved.

Large-Scale Scenarios. The performance hierarchy is ro-
bust and holds true for large-scale problems where S-EDP
is computationally infeasible. S-HDP continues to deliver the
best solutions, establishing it as the most effective algorithm
for practical applications. For instance, in the TS scenario
with n = 120, S-HDP improves upon the completion time
of the RR baseline by approximately 10%. The runtimes of

all heuristics exhibit manageable, polynomial-level growth,
confirming their suitability for real-world demands.

The performance gaps between algorithms are heavily influ-
enced by the task profile. The differences are most pronounced
in the Time-dominant (TS) scenario and narrowest in the
Resource-dominant (RS) scenario. This is because the high,
concurrent resource demands in the RS scenario create a
natural bottleneck that forces a near-sequential execution with
limited optimization potential for any algorithm. Conversely,
the TS scenario, with its long-duration but low-resource tasks,
presents a more complex combinatorial puzzle that amplifies
the performance differences between superior and conven-
tional scheduling strategies.

VIII. CONCLUSION

In this paper, we formalized the Single-Route Multi-UAV
Cooperative Scheduling Problem (SR-MUCSP), a computa-
tionally challenging problem motivated by emerging applica-
tions in the low-altitude economy. To tackle this, we propose
a novel skyline-based scheduling framework, using a “sky-
line” vector to create a canonical representation of resource
availability over time. This core concept enabled the design
of a provably optimal exact algorithm, S-EDP, which is made
tractable for small-scale instances by two powerful, problem-
specific pruning strategies: state dominance and Candidate
Placement Points (CPPs).

Our comprehensive simulations validated the effectiveness
of this framework. The results demonstrated that all algorithms
derived from the skyline representation consistently and sig-
nificantly outperform conventional heuristics across a variety
of task profiles. Furthermore, to handle large-scale instances,
we developed a suite of high-performance heuristics. Notably,
our premier heuristic, S-HDP, successfully balances near-
optimal solution quality with high computational efficiency,
establishing it as a robust and practical solution for real-world
applications.

This work also opens avenues for future research. Our
current model assumes a homogeneous UAV fleet; a key future
direction is to accommodate heterogeneous UAVs with varying
capabilities, which presents a significant challenge.

REFERENCES

[1] X. Liu, “An overview of low-altitude economy research: Evolutionary
trajectory, core controversies and future pathways,” Journal of Economic
Policy and Finance, vol. 11, no. 3, pp. 187-193, 2025.

[2] DII, “DJI Dock 3 - Rise to Any Challenge,” https://enterprise.dji.com/
cn/dock-3, 2025, accessed: 2025-08-27.

[3] H. Ghazzai, H. Menouar, A. Kadri, and Y. Massoud, “Future uav-based
its: A comprehensive scheduling framework,” IEEE Access, vol. 7, pp.
75678-75695, 2019. [Online]. Available: https://api.semanticscholar.
org/CorpusID:195222532

[4] Y. Qu, H. Sun, C. Dong, J. Kang, H. Dai, Q. Wu, and S. Guo, “Elastic
collaborative edge intelligence for uav swarm: Architecture, challenges,
and opportunities,” IEEE Communications Magazine, vol. 62, pp. 62—
68, 2024. [Online]. Available: https://api.semanticscholar.org/CorpusID:
264459895

[5] N. Mohamed, J. Al-Jaroodi, 1.
F. Mohammed, “Unmanned aerial
future smart cities,” Technological Forecasting and Social
Change, vol. 153, p. 119293, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0040162517314968

Jawhar, A. Idries, and
vehicles applications in

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

W. Y. H. Adoni, S. Lorenz, J. S. Fareedh, R. Gloaguen, and
M. Bussmann, “Investigation of autonomous multi-uav systems for
target detection in distributed environment: Current developments and
open challenges,” Drones, vol. 7, no. 4, 2023. [Online]. Available:
https://www.mdpi.com/2504-446X/7/4/263

Y. Qu, H. Dai, H. Wang, C. Dong, F. Wu, S. Guo, and Q. hui Wu,
“Service provisioning for uav-enabled mobile edge computing,” I[EEE
Journal on Selected Areas in Communications, vol. 39, pp. 3287-3305,
2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:
237804523

Y. Qu, H. Dai, L. Wang, W. Wang, F. Wu, H. Tan, S. Tang,
and C. Dong, “Cotask: Correlation-aware task offloading in edge
computing,” World Wide Web, vol. 25, pp. 2185 — 2213, 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:249803439

F. Shan, J. Huang, R. Xiong, F. Dong, J. Luo, and S. Wang, “Energy-
efficient general poi-visiting by uav with a practical flight energy model,”
IEEE Transactions on Mobile Computing, vol. 22, no. 11, pp. 6427—
6444, 2022.

Y. Wang, J. Huang, F. Shan, Y. Gao, R. Xiong, and J. Luo, “Optimizing
joint speed and altitude schedule for uav data collection in low-altitude
airspace,” IEEE Transactions on Mobile Computing, pp. 1-15, 2025.
H. Dai, K. Sun, A. X. Liu, L. Zhang, J. Zheng, and G. Chen,
“Charging task scheduling for directional wireless charger networks,”
IEEE Transactions on Mobile Computing, vol. 20, no. 11, pp. 3163—
3180, 2021.

Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge University
Press, 2009.

D. P. Bertsekas, “The auction algorithm: A distributed relaxation method
for the assignment problem,” Annals of Operations Research, vol. 14,
no. 1, pp. 105-123, 1988.

O. Shehory and S. Kraus, “Task allocation via coalition formation among
autonomous agents,” in International Joint Conference on Artificial
Intelligence, 1995. [Online]. Available: https://api.semanticscholar.org/
CorpusID:2217087

Y. Li, Z. Zhang, Z. He, and Q. Sun, “A heuristic task allocation method
based on overlapping coalition formation game for heterogeneous
uavs,” IEEE Internet of Things Journal, vol. 11, pp. 28 945-28 959,
2024. [Online]. Available: https://api.semanticscholar.org/CorpusID:
270089279

T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé,
“Coalition structure generation with worst case guarantees,” Artificial
Intelligence, vol. 111, no. 1-2, pp. 209-238, 1999.

R. G. Smith, “The contract net protocol: High-level communication
and control in a distributed problem solver,” IEEE Transactions on
Computers, vol. C-29, pp. 1104-1113, 1980. [Online]. Available:
https://api.semanticscholar.org/CorpusID: 15267324

F. Fioretto, E. Pontelli, and W. G. S. Yeoh, “Distributed constraint
optimization problems and applications: A survey,” ArXiv, vol.
abs/1602.06347, 2016. [Online]. Available: https://api.semanticscholar.
org/CorpusID:4503761

H. Luan, Y. Xu, D. Liu, Z. Du, H. Qian, X. Liu, and X. Tong,
“Energy efficient task cooperation for multi-uav networks: A coalition
formation game approach,” IEEE Access, vol. 8, pp. 149372-149 384,
2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:
221282150

A. Lodi, S. Martello, and M. Monaci, “Two-dimensional packing
problems: A survey,” Eur. J. Oper. Res., vol. 141, pp. 241-252, 2002.
[Online]. Available: https://api.semanticscholar.org/CorpusID:3240079
D. S. Johnson, A. J. Demers, J. D. Ullman, M. R. Garey, and R. L.
Graham, “Worst-case performance bounds for simple one-dimensional
packing algorithms,” SIAM J. Comput., vol. 3, pp. 299-325, 1974.
[Online]. Available: https://api.semanticscholar.org/CorpusID: 14214580
J. Martinovic and N. Strasdat, “Theoretical insights and a new
class of valid inequalities for the temporal bin packing problem
with fire-ups,” Pesquisa Operacional, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:249009455

J. H. van Lint and R. M. Wilson, A Course in Combinatorics, 2nd ed.
Cambridge University Press, 2001.

Z. Feng, W. Xu, and J. Cao, “Distributed nash equilibrium computation
under round-robin scheduling protocol,” [EEE Transactions on
Automatic Control, vol. 69, pp. 339-346, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:257829320

