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A B S T R A C T

As wireless local area network (WLAN) continues to become popular, there is an increasing number
of clients with huge data tra�c demands. Especially, some high client-density environments are
emerging, such as industrial plants, stadiums, and event centers, which poses significant challenges in
terms of client association control. Under such environments, conventional client-side solutions that
select access points (APs) according to simple indicators such as signal strength may result in poor
network performance, and although some centralized association control mechanisms are proposed,
it is still di�cult that a large amount of complex global network status information needs to be
e�ectively and e�ciently utilized. To meet these challenges, we investigate the online centralized
association control problem that aims to improve user quality of experience (QoE), and propose a
deep reinforcement learning (DRL) aided solution, called Wi-OAC, where an image-like state pattern
is designed to achieve state reformulation for deep Q-network (DQN), and the double DQN and
dueling DQN strategies are combined to improve convergence speed. On the basis of o�ine training,
Wi-OAC can determine the proper AP-client associations for the arriving clients. Both simulation
experiments and real-world experiments have been conducted to validate the e�ectiveness of Wi-
OAC. In real-world experiments, we build a Wi-OAC testbed including 3 APs and 54 clients in less
than 10.5m2 area, and the results show that Wi-OAC can significantly improve the performance on
the client throughput, AP load balancing and user QoE.

1. Introduction

With the explosive growth of user devices, 802.11 wire-
less local area networks (WLANs) have become one of the
most popular wireless solutions to meet the ever-increasing
demands for wireless tra�c and user experience, which
accounts for a considerable portion of global mobile traf-
fic growth [1]. Nowadays, WLANs have been widely de-
ployed worldwide, providing users with more convenient
and higher-speed wireless services [2]. According to a recent
forecast from Cisco, there will be nearly 628 million public
WiFi hotspots by 2023 [3]. Consequently, the proliferation
of WLANs leads to the generation of a large number of high
client-density scenarios such as industrial plants, stadiums,
and event centers, where many clients are expected to con-
nect to access points (APs) within a small space.

Figure 1 presents a typical industrial scenario where a
huge number of client devices are densely deployed inside,
such as environmental sensors, manufacturing facilities and
user terminals. Obviously, regarding such a scenario, wire-
less networking is more suitable than wired networking. On
the one hand, the cable-connected devices cannot support
mobility well, making it inconvenient for people who need
to move constantly. Besides, for wired networking, dense
cables need to be deployed to achieve such a huge number of
connections, which is expensive and unsafe for the industrial
environment. On the other hand, WLANs can perform well
in the scenario due to its high data rate, ease of deployment,
and cost e�ciency. Meanwhile, most of devices can easily
access to the WLAN by inherent or additionally equipped
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WiFi modules. Therefore, the WLAN is a promising solution

Figure 1: High client density in industrial wireless networks. In
a industrial plant, a large number of client devices are densely
deployed and served by multiple APs, including different types
of environmental sensors, manufacturing facilities and user
terminals.

to provide wireless connections for heterogeneous devices in
the industrial environment [4].

However, it is very challenging to guarantee the client
tra�c demands in such a high client-density scenario. Al-
though the new generation WLAN technology (also known
as WiFi 6 or 802.11ax) significantly improves the average
throughput in densely deployed environments through ad-
vanced physical-layer and medium access control (MAC)
sub-layer technologies [5], appropriate AP-client association
management is still necessary to further improve the spec-
trum utilization and client throughput due to the scarcity of
spectrum resources. Nevertheless, conventional client-side
association mechanisms based on simple indicators such as
received signal strength indication (RSSI) may lead to an
unbalanced situation where some APs are overloaded while
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others are almost idle [6, 7]. Even though the metrics of AP
selection are improved [8, 9, 10, 11, 12], the performance
is still unsatisfactory. In this case, spectrum resources of
the overloaded APs are shared by too many clients [13],
thus resulting in a significant throughput degradation for the
clients served by the overloaded APs [14].

To this end, some centralized association control mech-
anisms [15, 16, 17] have been proposed to solve this issue
by determining the AP-client associations on the infras-
tructure side instead of client side. By dealing with the
global network status information collected from the con-
trolled APs such as their capabilities, operating channels
and associated client lists, these infrastructure-side solutions
can obtain a global view of the WLAN, and usually out-
perform the client-side solutions. However, given the size
and complexity of the collected data in high client-density
WLANs, these existing mechanisms cannot handle such a
large amount of complex global network status information
e�ciently, which undoubtedly degrades their performance
significantly. To bridge this gap, we apply the deep reinforce-
ment learning (DRL) method into the association control
mechanism, where a large amount of data is used to train
the association control policies without a comprehensive
analysis of the complex data. On this basis, we develop an
online association control scheme for the high client-density
WLANs, which assigns appropriate APs for the arriving
clients dynamically with the goal of improving user quality
of experience (QoE).

This paper investigates the online centralized AP-client
association control problem in high client-density WLANs
aimed at improving user QoE, while considering the elimi-
nation of overloaded APs. For this purpose, we first model
the association control problem as the Markov decision pro-
cess (MDP), the primary analysis framework of reinforce-
ment learning (RL), and define the state, action, reward and
policy accordingly. Considering the complexity of the state
space in the high client-density environment, a deep neural
network (DNN) is introduced to handle the dimensionality
curse, which is challenging to be solved in traditional RL.
Furthermore, by combining the advantages of deep learning
(DL) and RL, we propose a deep reinforcement learning
aided association control scheme, called Wi-OAC, which
can make online association decisions for the dynamic and
high-dimensional environment with the help of the o�ine
trained model through the data of APs and associated clients
collected from real-world scenarios. The main contributions
of this paper can be summarized as follows:

• We consider the challenges of centralized association
control for high client-density WLANs, and propose a
DRL-aided solution called Wi-OAC to improve user
QoE, where the global network status information
collected from real-world scenarios are utilized by
model training.

• Since the state space of DRL model is complicated,
a state reformulation scheme is designed to trans-
form the initial state representation into an image-
like pattern, and the convolutional neural network
(CNN) is utilized to e�ectively extract features such as
AP/client positions, existing associations, and through-
put of associated clients from the image-like tensors.
Moreover, the double deep Q-network (DDQN) and
dueling DQN strategies are combined to accelerate the
convergence.

• Both simulation experiments and real-world experi-
ments are conducted for performance evaluation. In
real-world experiments, a Wi-OAC testbed with 3 APs
and 54 clients is built in less than 10.5m2 area, and
the experimental results demonstrate that our solution
can significantly improve the performance in terms of
average throughput, AP load balancing, and user QoE.

The rest of the paper is organized as follows. Section
2 briefly provides some related work. In Section 3, we
introduce the system model and formulate the association
control problem in high client-density environment. Then
in Section 4, the framework of Wi-OAC with system state
reformulation and implementation details are presented. We
validate the performance of Wi-OAC through simulation
and real-world experiments in Section 5 and 6 respectively.
Finally, we draw conclusions and summarize this paper in
Section 7.

2. Related Work

AP-client association plays an important role in im-
proving WLAN performance and user experience. Hence,
much research e�ort has been devoted to designing AP-
client association solutions in recent years. We categorize
the related work into two main strands. The former focuses
on the AP-client association mechanisms in WLANs, while
the latter considers utilizing the RL method for AP-client
association decision making.

2.1. AP-client Association Mechanisms

The existing AP-client association mechanisms can be
divided into two categories: the client-side AP selection
[8, 9, 10, 11, 12] and the infrastructure-side association
control [15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Client-side AP Selection: The default association mech-
anism of the 802.11 standard is a typical client-side AP
selection mechanism, where clients always select the APs
with the highest RSSI. As mentioned above, the default
mechanism cannot provide satisfactory network service, and
some works have been done to improve its performance.
Xu et al. [8] propose an AP selection mechanism, called
SmartAssoc, which makes clients select the best candidate
AP according to the RSSI and AP load. In SmartAssoc,
clients generate modified probe request tra�c to estimate
the load of AP candidates without association. Issa et al.
[9] also propose an AP selection algorithm that associates
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the client to an AP based on AP load as well as the RSSI
value of its beacon, where the AP load information can be
obtained through modified beacon frames. Oni et al. [10] let
the client associate with the AP with the highest Signal-to-
Interference-plus-Noise Ratio (SINR), which characterizes
the degree of interference of the adjacent basic service
sets to the target AP and is calculated by physical layer
rate, received power, and the number and size of frames
received from other interfering sources. In addition, Kim
et al. [11] predict the channel interference level and AP
load status by continuously detecting the RSSI and receiving
interval of beacon frames. As APs always send beacon
frames periodically, the data used for decision making is
easy to obtain and the overhead is negligible. With the goal
of maximizing the global throughput subject to application
QoS and AP load constraints, Dinh et al. [12] propose
distributed user-to-multiple AP association methods that
allow users to make more intelligent association decisions
by leveraging the DQN and DDQN-based DRL frameworks.

However, the performance of these client-side associa-
tion mechanisms is still limited by local information, since
a single client cannot obtain the global network status in-
formation. Moreover, the improved mechanisms inevitably
require modifications to the clients, which make them im-
possible to be transparent to users and are challenging to be
widely popularized and applied.

Infrastructure-side Association Control: For the
infrastructure-side association control mechanism, a central
controller is usually utilized to make central AP-client
association decisions, which assigns a specified AP to serve
each client. Murty et al. [15] introduce a central controller
to make association decisions and only force the specified
AP to reply with probe response frames so as to make
itself visible to the client. Likewise, Zhang et al. [16]
use a similar mechanism to decide the frequency bands
for clients in the dual-band WLAN. Raschellà et al. [17]
propose an AP association algorithm which relies on a
centralized potential game developed in a software-defined
wireless network framework, while considering external
interference. In this algorithm, AP-client associations are
decided according to the fittingness factor, a performance
parameter with a value ranging between 0 and 1, which
represents the suitability of the AP to meet a client’s QoS
demand. Given the signal quality, AP loads and minimum
requirements for user tra�c, Bayhan et al. [18] propose
several AP-client association schemes based on a software-
defined networking (SDN) controller, and leverage link-
layer multicasting to handle users with same content re-
quests so as to improve the network utilization. Huang
et al. [19] formulate the online AP-client association and
resource allocation problem in wireless caching networks as
a stochastic network optimization problem and propose an
e�ective scheme targeted at the minimal delivery latencies
and maximum network utilities such as throughput. Wong
et al. [20] jointly consider association control and random
access control to achieve the maximum proportional fairness

of client throughput. Gómez et al. [21] propose a SDN-
based client association and channel assignment scheme that
considers signal strength, channel occupancy and AP load to
improve the utilization of available wireless resources and
avoid the need for densification. Jian et al. [22] investigate
the user association problem under the multi-association
scenarios and design the mechanism for load balancing and
energy e�ciency by jointly considering user association,
power allocation and edge node deployment.

Moreover, some researchers [23, 24] consider adjusting
AP-client associations through client migrations. Wong et
al. [23] propose an approximation algorithm to optimize AP
re-association by maximizing the minimum user throughput
with a certain migration cost constraint. Bhartia et al. [24]
divide APs into di�erent cells and APs in the same cell
broadcast the same basic service set identifier (BSSID) and
share global information while operating on di�erent chan-
nels. In this case, to improve the network performance, APs
send unicast channel switch announcement (CSA)-enabled
beacon frames and steer associated clients to other suitable
APs in the same cell dynamically based on an innovative
protocol called FreeSteer.

As the infrastructure-side association control mecha-
nisms usually need very little or even no modification on
the clients, they are user-transparent and can be easily de-
ployed in actual scenarios. More importantly, by obtaining
a global perspective of the WLAN through a large amount
of network status information, these centralized mechanisms
can make more reasonable association decisions for clients.
However, these existing mechanisms may not be able to
tackle new challenges in high client-density environments.
For example, to make wiser association decisions, the con-
troller needs to collect network status information from APs
to obtain a global view of the WLAN. However, given the
densely deployed client devices and APs in high client-
density WLANs, there is a large amount of complex net-
work status information and those existing infrastructure-
side solutions cannot handle it e�ciently. Besides, high
client-density causes more frequent user mobility and more
interference. That is, the wireless environment will become
more dynamic, making it di�cult for those mechanisms to
understand the network status and make proper association
decisions. Thus, our solution introduces the DRL method
to handle the association control problem in high client-
density WLANs, where a large amount of global network
status information can be used to train the model. Besides,
we design a state reformulation scheme to further help with
feature extraction and model training.

2.2. RL based Association Control

Due to the capability for dealing with complex problems
in an unknown environment and adapting to the dynamic
system state, RL has received widespread attention over the
last few years and is applied in many problems such as
dynamic resource allocation problems [25] and sequential
decision problems [26]. Given the dynamics of wireless en-
vironment, some RL-based association control mechanisms
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have been proposed. Kafi et al. [27] use a linear combination
of features (LCF) to approximate the Q-value function in
the association control problem, which improves the perfor-
mance and e�ciency of RL. There are also some solutions
[25, 26, 28, 29] that introduce DNN to solve the curse of
dimensionality. Meng et al. [25] use DRL to deal with the
power allocation problem in wireless cellular networks and
prove the good generalization ability of their method. Wang
et al. [26] study the problem of dynamic multichannel access
in wireless networks and use DRL to learn a policy that
could maximize the expected long-term tra�c for success-
ful transmission. The results show that their method can
achieve the best performance in complex situations. Yu et al.
[28] propose a DRL-based MAC protocol for heterogeneous
wireless networks, and the goal is to learn the best channel
access policy without understanding the operating principles
of the MACs of the coexisting networks. Dinh et al. [29]
propose a distributed DRL method based on DQN to solve
the problem of joint AP association and beamforming in
an integrated sub-6GHz/mmWave system, which aimed at
maximizing the long-term throughput, while satisfying a
large number of heterogeneous user QoS requirements.

Therefore, the existing methods demonstrate that RL can
deal with the unknown dynamics and prohibitive computa-
tion of wireless environments. However, with the objective
of maximizing the aggregate throughput, most of them ig-
nore the fact that client tra�c demands could be di�erent
according to the application types. Besides, the proposed
models are mainly trained and evaluated through simulation
data and experiments. On this basis, we propose a DRL-
aided association control solution for high client-density
WLANs. By defining di�erent QoE evaluation models for
di�erent applications, our solution can make online associa-
tion decisions for the arriving clients so as to maximize the
average user QoE metric.

3. System Model and Problem Formulation

In this section, we first introduce the system model and
then formulate the client association control problem for
high-density WLANs.

3.1. System Model

We consider a multi-AP WLAN with a central controller,
as depicted in Figure 2. The number of APs is denoted byM ,
and the set of APs is represented by {1, 2,… ,M}. In this
paper, we adopt a centralized association control mechanism
based on active scanning [15]. When client i arrives, the
controller will aggregate the client’s requests and AP status
information from multiple APs and then make association
decisions in a centralized manner. Note that we only consider
the association decisions when clients arrive, and for client
departure events, given the complexity, we make no adjust-
ment to the AP-client association relationship every time a
client leaves the WLAN. However, the influence of these
client departure events on network status can be well re-
flected once an arriving client requests for association. Since
clients arrive frequently in high client-density WLANs, the

proposed mechanism can provide timely feedback for the
client departure events. Figure 2 describes the association
control process, including the following four steps:

1. The APs within the scanning range of client i receive
probe request frames and make no response.

2. These APs forward the requests of client i to the
controller, and then the controller will select an ap-
propriate AP for client i based on global information.

3. The controller only notifies the specified AP of the
decision result.

4. The specified AP sends probe response frames when
the client i starts the next round of scanning.

The above mechanism ensures that only one AP is visible to
arriving client i.

We consider the discrete time steps in our system, and
assume that there is only one arriving client at each time
step t. For each client, it will be associated with one AP
when accessing to the network. In order to represent the AP-
client association, we define xti = j to indicate that client i is
associated with AP j À {1,… ,M}, where xti is an element
in AP-client association vector Xt of time step t. For the
current time step t, the total number of connected clients
in the network is denoted by Nt, and the set of clients is
represented by {1, 2,… ,Nt}.

We mainly focus on downlink tra�c in this work as it
accounts for the vast majority of the overall WLAN tra�c.
Thus, the downlink throughput of client i at time step t is
denoted by hti, and the corresponding throughput vector is
denoted by Ht = {ht1,h

t
2, ...,h

t
N}. The user QoE metric of

each client is represented by qti , and its specific definition
varies from di�erent application scenarios [30, 31, 32].

The positions of APs are fixed after the deployment and
easy to acquire for the network administrators. Owing to
the existence of multiple APs, each client’s position can be
estimated by WiFi indoor positioning [33]. Therefore, the
positions of the APs and clients can be used as inputs for
association decision-making.

The notations in this paper are summarized in Table 1.

3.2. Problem Formulation

Consider that in a high client-density environment, APs
and clients’ positions are arbitrary, and the arrival of clients
is uncertain. In our work, there is one arriving client at each
time step, and thus the client association control problem
can be regarded as a sequential decision problem, which
can be solved in the following manner. A decision agent
interacts with a discrete event dynamic system sequentially.
In each step, the dynamic system will be in a certain state.
The agent will observe the current state and select one action
from a given action set according to the agent’s policy. Then,
the dynamic system will enter the next state and obtain a
corresponding reward. In this way, the state transition and
action selection are carried out iteratively to maximize the
benefits.

Therefore, we model the WLAN system as a discrete
event dynamic system driven by client arrival events. Specif-
ically, event it represents that client i arrives at the network
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Figure 2: A multi-AP WLAN with centralized association control mechanism. The central controller makes AP-client association
decisions based on the global network status information collected by multiple APs, and assigns a specified AP to serve each
arriving client.

Table 1
Notations and corresponding descriptions

Notation Description Notation Description
M Number of APs xti AP that serves client i at time step t
Xt AP-client association vector of time step t Nt Number of connected clients at time step t
hti Throughput of client i at time step t Ht Client throughput vector of time step t
L(d) Signal path loss of distance d �1, �2 Parameters of path loss model
dBP Breakpoint distance it Event of client i’s arrival at time step t
⌦t Average user QoE of time step t qti User QoE of client i at time step t
Rt
i,j RSSI between client i and AP j at time step t ✓ Clear channel assessment threshold

P AP transmit power dti,j Distance between client i and AP j at time step t
S State set A Action setRt Reward function of time step t ⇧ Policy set
st, at, rt System state, action and reward at time step t � Discount factor in RL
p(st+1st, at) State transition probability from st to st+1 after at ↵ Learning rate
Rt RSSI vector of time step t AUt Airtime utilization (AU) vector of time step t
Ot
A, O

t
C Position matrix of APs/clients of time step t E⇡ Long-term reward expectationDt

H Set of discrete values for throughput of time step t Dt
R Set of discrete values for RSSI of time step tDt

AU Set of discrete values for AU of time step t Dt
O Set of discrete values for positions of time step t

 (st) Image tensor of system state at time step t f Balance indexTj Load of AP j N Gaussian white noise in the environment
W ,L Width and length of scenarios ✏s, ✏f Initial/Final exploration probability

at time step t. Once a new arrival event it occurs, the con-
troller runs the association control algorithm and selects the
appropriate AP for client i, and then the time step becomes
t + 1.

In this work, we investigate the online client association
control problem for high-density WLANs. For the current
time step t, the association control problem is to maximize
the current average user QoE metric by determining the
proper AP-client association for the client arrival event it,
while considering the association constraints, clear channel
assessment (CCA) constraints and RSSI constraints. Thus,
the problem can be formulated as follows:

max ⌦t =
≥Nt

i=1 q
t
i

Nt (1)

s.t. xti = j À {1,… ,M}, ≈i À {1,… ,Nt} (2)
Rt
i,xti

> ✓, ≈i À {1,… ,Nt} (3)

Rti,j = P * L(dti,j), ≈i À {1,… ,Nt},
≈j À {1,… ,M} (4)

where Eq. (1) reveals the goal of maximizing the current
average user QoE metric at time step t. Since client demands
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Figure 3: The overall framework of Wi-OAC, where the DQN model receives the reformulated state as an input, outputs an
action and calculates the corresponding reward. In the DQN model, Q-values for each action are calculated in the Q-network
and stored in replay memory in the form of experience tuples. Besides, a batch of experience tuples is sampled randomly and
periodically to calculate the loss and update the weights in the Q-network. The weights are copied to the target Q-network for
every certain steps to accelerate the convergence.

may vary due to di�erent application types, we define dif-
ferent QoE evaluation models for three common application
types and the user QoE metric at each time step is determined
by the applications used by the arriving client currently. Eq.
(2) presents the association constraints, that is, client i is
associated with only one AP at time step t. Specifically,
xti represents the AP that is associated with the client i at
time step t. Eq. (3) expresses the CCA constraints, namely,
the RSSI between the arriving client i and AP xti must be
higher than CCA threshold ✓. Finally, the RSSI constraints
are specified by Eq. (4), that is, the RSSI value is determined
by the AP’s transmit power P and path loss L(dti,j) based on
the distance between client i and AP j at time step t.

4. Wi-OAC

In this section, we propose a deep reinforcement learning
aided association control solution called Wi-OAC for high
client-density WLANs. Firstly, we present the framework
of Wi-OAC based on MDP, including the definitions of
state, action, reward and policy. Due to the complexity of
the state space, we design a state reformulation scheme
that transforms the system state to an image-like pattern.
Finally, the implementation details of the Wi-OAC solution
are illustrated.

4.1. Wi-OAC Framework

In Section 3.2, the client association control problem is
regarded as a sequential decision problem, which is suitable
to be described by MDP, a set of sequential decision pro-
cesses with Markov attributes. At time step t, by observing
state st À S , the agent takes action at À A and interacts with
the environment to gain the corresponding reward. After the

reward rt is obtained, the environment moves to the next state
st+1. The goal of MDP is to find a policy that maximizes the
expected cumulative reward, and the cumulative discounted
reward function Rt is defined as

Rt =
ÿ…
⌧=0

�⌧rt+⌧+1 (5)

where � À [0, 1) is a discount factor that trades o� the
importance of immediate and future rewards, and rt+⌧+1
denotes the reward at time step t + ⌧ + 1.

In this paper, we use a model-free approach where the
state transition probability p(st+1st, at) is unknown. Gen-
erally, Q-learning is used in a typical RL method to learn
excellent action strategies gradually so as to maximize the
expected cumulative reward in the case of knowing nothing
about the environment. To perform an action according to a
given state, Q-learning estimates the utility function (i.e., Q-
value function) gradually according to the following rules:

Q(st, at) } (1 * ↵)Q(st, at) + ↵(rt + � max
a®

Q(st+1, a®))
(6)

where ↵ is the learning rate, and Q(st, at) indicates the
estimated long-term reward after taking action at at state
st. Based on the optimization goal described in Eq. (1),
we define the state, action, and reward in the Q-learning as
follows.

4.1.1. State

The state is the abstraction of the environment, and
the basis for the agent to choose actions. According to the
association control problem described in Section 3.2, the
current association relationship and throughput of clients
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are the basic information that the agent should obtain to
perceive the current environment. Moreover, some available
information has also been proved to be suitable for the
criteria in association control [8, 9, 11], including the RSSI
between the arriving client and APs, and the load of APs.
Besides, we consider positions of APs and the arriving
client in this paper, which may be useful for wiser decision-
making. After the agent obtains the above information from
the environment, it will form the system state defined as
follows.

st = (Xt,Rt,AUt,Ht,OtA,O
t
C ) (7)

where Xt is the current association vector, Rt is the RSSI
vector, AUt is the AU vector used to measure the load of
APs, Ht is the throughput vector, and OtA and OtC are the
position matrices of APs and the arriving client, respectively.

4.1.2. Action

The agent needs to select an action based on the system
state st according to its policy. For the client association
control problem, the agent’s action is defined as the AP that
is assigned to serve the arriving client at time step t, that is,
at À A and at is defined as follows.

at = argmaxaÀAQ(st, a) (8)

4.1.3. Reward

In our work, the goal is to maximize the average user
QoE metric at time step t. Thus, the single-step reward rt
depends on the increment of average user QoE metric caused
by the action at, i.e.,

rt = ⌦t+1 * ⌦t (9)

4.1.4. Policy

In MDP, the policy ⇡ is employed to determine the next
action based on the current state. Thus, our goal is to find
the optimal policy ⇡< with the maximum long-term reward
expectation E⇡ , which is defined as follows:

⇡< = argmax⇡À⇧E⇡[
ÿ…
t=0

�trts0] (10)

Remarkably, the traditional Q-learning algorithm forms
the Q-value function gradually by constructing and updating
the Q-table. However, according to the definition of the
state mentioned above, there are some continuous variables
in the system state, which can cause infinite rows in the
Q-table. A feasible solution is to discretize the continuous
variables. Nevertheless, for a high client-density WLAN, the
state space after discretization may be unacceptably large. In
this case, even if the Q-table is constructed, it is di�cult to
update and converge it.

An alternative is DNN, which can extract complex non-
linear features from the input data, and is suitable for ad-
dressing RL problems with a large state space. Therefore,

we use DNN to approximate the Q-value function, as shown
in the following formula:

Q(s, a) ˘ q(s, a;!) (11)

where q(s, a;!) is the approximation given by the DNN, and
! is a parameter vector containing the weights of the edges
in the DNN.

Thus, by combining the advantages of the DL and RL,
we propose the Wi-OAC framework to handle the client
association control problem. Figure 3 presents the overall
framework of Wi-OAC that consists of two main parts, the
o�ine training and the online association. During the o�ine
training, we use the data collected from APs and associated
clients under real-world scenarios to train the DQN model.
Specifically, DQN is used as an approximator to receive
the state as an input, select an action according to actions’
Q-values and obtain the corresponding reward. Meanwhile,
q(s, a;!) is updated accordingly by adjusting the weights in
the DQN to learn the optimal association policy gradually.
After that, in the online association, by leveraging the trained
model, the controller specifies an appropriate AP for each
arriving client and completes the corresponding AP-client
association.

4.2. State Reformulation

On the basis of the Wi-OAC framework, we reformulate
the system state as an image-like pattern, where di�erent
semantic information can be encoded in di�erent channels.
To be exact, the transformed state is called an image-like
tensor  (st). We choose to reformulate the state mainly
based on the following three considerations.

• The e�ectiveness and e�ciency of the DRL algorithm
depend on whether the representation of system state
is reasonable. To ensure that DQN can extract features
from the input e�ectively, it is necessary to transform
the initial representation of system state into a struc-
tured representation.

• CNN is suitable for extracting the spatial features of
images and the logical relationship between pixels,
and the information contained in them can guide the
decision-making of association control. Thus, to make
full use of CNN, the reformulation process is con-
ducted to transform the input into an image-like tensor
 (st).

• The size of  (st) can be well fixed, which means that
no matter how the number of APs changes, and how
the clients join or leave, the size of (st) does not need
to be changed.

We complete the reformulation through two-dimensional
representation of the environment and discretization of
space. The size of  (st) is W ù L ù 5, where W and L
are the width and length of the environment, respectively,
and the number of image channels is 5. Therefore, there are
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W ùL pixels in each image channel. Each pixel in the image
is a grid, representing a certain size of square space in the
actual environment. Di�erent status information about APs
and clients in this grid can be expressed in di�erent channels.

Figure 4 intuitively depicts the reformulated system
state, where circles in di�erent colors represent clients
with di�erent statuses, i.e., the red, green, and blue circles
correspond to the unconnected, connecting, and connected
clients, respectively. Specifically, the information encoded
in each channel is defined as follows:

Five-Channel Images

Conv1

Conv2

Dense1, 512

Dense2, 256

q(ȥ(s), a; Ȧ) for each action

DQN

1 2 3 4

Dense3, M

o
o

o o

o
o

o o

o

o

o
o

o o

o
o

o o

o

o

o
o

o o

o
o

o o

o

o

5

Figure 4: State reformulation and DQN structure. The
system state is reformulated into an image-like tensor with
five channels where the global network status information is
encoded. On the basis of the image-like tensor, Q-values for
each action are estimated by DQN, which mainly contains 2
convolutional layers, 2 pooling layers, and 3 fully connected
layers.

• AP-position channel: This channel indicates the po-
sitions of deployed APs. For each pixel, if there is an
AP at its corresponding position, let its value be the
AP’s ID.

• AU channel: This channel indicates the airtime uti-
lization of APs. For each pixel, if there is an AP at its
corresponding position, let its value be the AP’s AU.

• Association channel: This channel indicates the as-
sociation relationship between APs and connected
clients. For each pixel, if there is a client at its corre-
sponding position and the client has connected to an
AP, the value is set to that AP’s ID.

• Throughput channel: This channel indicates the
throughput of associated clients. For each pixel, if
there is a client at its corresponding position and the
client has connected to an AP, the value is set to the
client’s current throughput.

• Arriving-client channel: This channel indicates the
position of the arriving client which is currently being
handled. For the pixel corresponding to the position
of the client, its value is set to 1.

In the above five channels, the values of pixels without
any correspondence are all set to 0. In addition, pixels with

values other than 0 require normalization due to the di�erent
dimensions and value ranges of each channel’s encoded
information.

4.3. Wi-OAC Implementation

In this section, we introduce the implementation details
of Wi-OAC, including the DQN configuration, action selec-
tion, and optimization techniques.

4.3.1. DQN Configuration

DQN is the core of decision-making in the Wi-OAC
scheme, which is essentially a function mapping:  (st) ô
q( (st), a;!). CNN is used as the main structure of DQN
as it is an excellent non-linear function approximator. Ac-
cording to a practical theory for designing deep CNN
e�ectively[34], the DQN can be divided into two levels, that
is, classifier and feature levels. For the classifier level, we
use 3 fully connected layers to achieve better classification
results, and the number of neurons in the fully connected
layer is 512, 256, and M , respectively. For the feature level,
we use 2 convolutional layers and 2 pooling layers. To
balance the e�ciency of feature extraction and computation
complexity, the first and second convolutional layers use 10
and 20 convolution kernels of size 3 ù 3, respectively, and
use Rectified Linear Unit (ReLU) as the activation function.
The structure of DQN is shown in Figure 4, and the specific
settings of DQN are presented in Table 2.

4.3.2. Action Selection

We use the ✏-greedy strategy for action selection. Specif-
ically, the parameter ✏ is set to guide whether to explore new
action or exploit existing policy. For example, we can set
✏ = 0.1 to ensure that the probability of exploration is 10%,
and the probability of exploitation is 90%. In this case, all
possible actions in a specific state have the opportunities
to be selected and executed, which helps the agent learn
unknown knowledge and increases the probability of finding
the optimal action.

In this paper, we initialize ✏ = ✏s and gradually decrease
it to ✏f as the training progresses. The detailed o�ine train-
ing algorithm is illustrated in Algorithm 1. At the beginning,
the scenario parameters such as ✏ and ↵ are set to initial
values, and the replay memory R is initialized. Then, the
current Q-network and target Q-network are initialized with
random weights. There are Z training epochs in the o�ine
training, each of which includes T time steps. At each time
step, the agent deals with a new client arrival event. Firstly,
the agent transforms the input into the system state according
to Eq. (7), which is further reformulated into an image-like
tensor. Then, the agent obtains the available action set Ati
based on the current state and selects an action from Ati.
Given the action selection strategy mentioned above, the
action is determined by a generated random number. If the
number is less than ✏, the agent selects an action randomly,
otherwise it selects the action with the maximum Q-value.
After the arriving client is associated with the selected AP,
the reward and new state are obtained, and the current state
 (st), action at, reward rt and new state  (st+1) are stored
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Table 2
Specific Settings of DQN

Layer Input Shape Kernel Activation Output Shape
Conv1 W ù Lù 5 3 ù 3, 10 ReLU (W * 2) ù (L * 2)ù 10
Pool1 (W * 2) ù (L * 2)ù 10 2 ù 2 None ‰W *2

2
Â ù ‰L*2

2
Âù 10

Conv2 ‰W *2
2

Â ù ‰L*2
2
Âù 10 3 ù 3, 20 ReLU ‰W *6

2
Â ù ‰L*6

2
Âù 20

Pool2 ‰W *6
2

Â ù ‰L*6
2
Âù 20 2 ù 2 None ‰ ‰W *6

2 Â
2

Â ù ‰ ‰ L*62 Â
2

Âù 20

FC1 ‰ ‰W *6
2 Â
2

Â ù ‰ ‰ L*62 Â
2

Âù 20 N/A ReLU 512
FC2 512 N/A ReLU 256
FC3 256 N/A None M

in the replay bu�er. The agent samples a minibatch fromR periodically to calculate the loss and update the weights
in the current Q-network. The target Q-network will also
be updated with the parameters of the current Q-network
at regular intervals. The online association algorithm is de-
picted in Algorithm 2. First of all, the o�ine-trained model is
loaded, with the help of which the agent can make the online
AP-client association decision for each arriving client. The
procedure for association decision-making is similar with
the o�ine training. Once a client arrives, the agent forms
the system state based on the input, and transforms it into
an image-like tensor. Then, it calculates the available action
set according to the current state, and selects the action with
the maximum Q-value by following the policy learned from
the o�ine training phrase. Finally, it performs the selected
action in the environment, and waits for the next client
arrival event.

4.3.3. Optimization Techniques

In order to further improve the performance of Wi-OAC,
two optimization strategies are applied for DQN, which are
DDQN [35] and dueling DQN [36].

In nature DQN, the Q-value of the current action is
estimated using the maximum value of the Q-value in the
next state. Although maximum estimation can quickly bring
the Q-value closer to the possible optimization goal, it can
also easily lead to overestimation. That is, some actions in
partial states may be given overestimated rewards. To solve
this problem, DDQN decouples the selection of target Q-
value action and the calculation of target Q-value, and thus
can usually achieve better performance and higher conver-
gence speed. Specifically, DDQN contains two networks
with the same structure and di�erent network parameters
called current Q-network and target Q-network. The former
is responsible for selecting actions, and the latter is used
to calculate the target Q-values as its network parameters
remain unchanged over a while. Notably, the parameters of
the target Q-network are always copied from the current Q-
network for every certain number of steps.

Another optimization strategy concerns about the fact
that although both of the state and action contribute to the
Q-value, the degree of influence on it is di�erent. Hence,
we hope that the Q-value can reflect the di�erences in the

Algorithm 1 O�ine Training in Wi-OAC
Input: the association vector Xt, throughput vector Ht,

RSSI vector Rt, AU vector AUt, AP position matrix
OtA, client position matrix OtC , and client arrival events
{i1, i2,… , iT }
Output: the trained model
1: initialize scenario parameters and replay memory R
2: initialize current Q-network qc and target Q-network qt
3: for training epoch k = 1 to Z do

4: for time step t = 1 to T do

5: form state st according to arrival event it
6: reformulate the state st to  (st)
7: obtain the available action set Ati
8: if rand < ✏ then

9: select an action at À Ati randomly
10: else

11: select at = argmaxaÀAti qc( (st), a;!)
12: execute action at in the environment
13: obtain rt and  (st+1) from the environment
14: store experience tuple ( (st), at, rt, (st+1)) inR
15: if replay_memory_size >= batch_size then

16: take ( (sj), aj , rj , (sj+1)) samples from R
17: calculate the loss and train the qc( (s), a;!)
18: if time step for model updating then

19: update qt with the weights of qc

following two aspects. On the one hand, in some state, the
Q-values for choosing di�erent APs should fully reflect the
di�erences. On the other hand, in di�erent states, the rewards
for choosing the same AP may di�er significantly, so the Q-
values for di�erent states should also be well distinguished.
Therefore, dueling DQN is used to tackle this issue, which
considers dividing the Q-network into two parts, i.e., the
value function and the advantage function. Specifically, the
value function is only related to the current state and has
nothing to do with the adopted action, while the advantage
function is related to both the state and action. In this work,
two sub-network structures are added before the output layer,
corresponding to the value function network and advantage
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Table 3
Parameter settings of network scales

Number of clients Number of APs Length L & width W (m)
45 3 9, 9
75 5 11, 11
105 7 13, 13
135 9 15, 15
165 11 16, 16
195 13 18, 18
225 15 19, 19
255 17 20, 20

Algorithm 2 Online Association in Wi-OAC
Input: the association vector Xt, throughput vector Ht,

RSSI vector Rt, AU vector AUt, AP position matrix OtA,
client position matrix OtC , and client arrival event it
Output: the specified AP at
1: load the trained model
2: for time step t = 1 to ÿ do

3: form state st according to arrival event it
4: reformulate the state st to  (st)
5: obtain the available action set Ati
6: select at = argmaxaÀAti qc( (st), a;!)
7: execute action at in the environment
8: transform to the next state  (st+1)

function network respectively. Notably, the final output of
the Q-network is a linear combination of the value function’s
output and the advantage function’s output.

5. Simulations

In this section, we validate the e�ectiveness of our Wi-
OAC solution under di�erent scenario scales through simu-
lation experiments.

5.1. Setup

Firstly, the settings of simulation experiments are pre-
sented. We consider network scenario as a two-dimensional
rectangular area, which is determined by its length L and
width W . The positions of APs and clients are randomly
generated according to the normal distribution and are dif-
ferent from each other. According to Cisco’s report [37], an
environment with a large number of concentrated clients (g1
client every 1.5m2) can be defined as high client-density
environment. In addition, a typical ratio of the number of
clients to the number of AP is 15 : 1. Therefore, we refer
to these criteria to set up network scenarios with di�erent
scales that are presented in Table 3. In the following, we
use the number of clients to represent the corresponding
scenario scale, i.e., 45, 75, 105, 135, 165, 195, 225, and 255,
respectively.

In the simulation experiments, we adopt the average
client throughput as average user QoE metric regardless

Table 4
Simulation Parameters

Parameters Values
Path Loss Model Parameters
Path loss of reference distance L0(dB) 106.73
Breakpoint distance dBP (m) 5
Slope before breakpoint �1 2
Slope after breakpoint �2 3.5
Scenario Parameters
Channel bandwidth (MHz) 40
AP transmit power P (mW) 100
CCA ✓ (dBm) -80
Gaussian white noise N (dBm) -82
Algorithm Parameters
Discount factor � 0.9
Replay memory capacity 1 ù 106
Minibatch size 32
Target network update period 200
Activation function ReLU
Initial exploration probability ✏s 1.0
Final exploration probability ✏f 0.001

of specific user application. We set the parameters of path
loss model according to the model B of the standard WiFi
channel models [38], which represents a typical large open
space and o�ce environment. Besides, Gaussian white noiseN is applied to the environment, and N is set be -82
dBm. We assign 40MHz orthogonal channels to each AP
that supports 802.11ac. We set that clients are under the
saturated tra�c conditions and share spectrum resources in a
temporary fairness way. Hence, the client throughput can be
obtained through a mapping table of SNR to modulation and
coding scheme (MCS) values [39]. The specific simulation
parameters are summarized in Table 4.

In addition to the average client throughput, we also
evaluate the performance on AP load balancing. To this end,
we adopt a balance index based on Jain’s Fairness Index [40],
which is defined as follows:
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f =
(≥M

j=1 Tj)2
M≥M

j=1(Tj)2 (12)

where Tj represents the load of AP j. The AP load is usually
measured by AU, which refers to the percentage of time
when the wireless channel is busy. Since it is di�cult to
obtain the real-time AU in the simulation environment, the
AP load is characterized by the aggregate throughput of AP.

For each set of simulation experiments, the DRL model
for online association is trained o�ine under the correspond-
ing network scenario, and then loaded into the controller
for the performance evaluation. Besides, we compare our
Wi-OAC solution with two other association control mech-
anisms, that is, strongest-RSSI-first (SRF), and RL method
based on LCF [27].

5.2. Simulation Results

According to the above settings, we generate 8 scenarios
with di�erent scales, where the number of arriving clients
is 45, 75, 105, 135, 165, 195, 225, and 255, respectively.
Experiments on each scenario are carried out three times to
eliminate the contingency. The average client throughput and
balance index are measured after all clients connect to the
WLAN.

Figure 5: Performance on average client throughput varying
scenario scales.

Figure 5 illustrates the average client throughput ob-
tained by the three association control mechanisms when
scenario scales are varying. It can be observed that our Wi-
OAC scheme achieves significantly higher average client
throughput compared to the LCF and SRF schemes on all
scenario scales. Moreover, we can also see from the figure
that the average client throughput has a slightly decreasing
trend with the expansion of network scenarios. It can be ex-
plained that more APs are deployed in large-scale scenarios
to serve more clients and ensure that user experience will not
be reduced significantly. However, the slightly decrease of
average client throughput is inevitable, because some clients

may connected to an AP that is further away from itself when
the scenario expends.

Figure 6: Performance on AP load balancing varying scenario
scales.

Figure 6 shows the performance on AP load balancing.
It can be seen from the figure that our Wi-OAC scheme
achieves the best performance on AP load balancing re-
gardless of scenario scales. That is because the association
decision making of Wi-OAC is on the basis of the global
network information, and can e�ectively prevent clients
from associating with overloaded APs.

6. Testbed and Real-world Experiments

In this section, we implement a prototype of Wi-OAC,
deploy a realistic high client-density testbed and conduct
real-world experiments for further performance validation in
terms of average client throughput, AP load balancing and
user QoE.

6.1. Wi-OAC Prototype and Testbed

To verify the e�ectiveness of our Wi-OAC solution
in real-world scenarios, we implement a prototype which
consists of a central controller, multiple APs and several
client clusters. The architecture is shown in Figure 7, and
the implementation details are explained as follows:

6.1.1. Controller-side Implementation

The central controller aggregates the global network sta-
tus information and makes DRL-aided AP-client association
decisions. Specifically, the data aggregation module deals
with the status information about APs and clients, which is
received by the communication module. The data is stored,
and can be utilized as the input of o�ine training in the
association control module. Meanwhile, with the help of the
o�ine-trained model, the association control module makes
online association decision for each arriving client according
to the current system state tensor. Moreover, a Web-based
management system is built on the controller for network
manager to configure and manage the WLAN.
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Figure 7: Architecture of Wi-OAC prototype. The prototype
consists of a central controller, multiple APs and several client
clusters.

6.1.2. AP-side Implementation

We adopt the embedded board Compex WPQ864 1 with
Qualcomm QCA9984 chipset as AP devices. The APs are
flashed with Linux-based open-source OpenWrt 2. In the
Wi-OAC, the APs not only provide WiFi connections for
clients, but also acts as the data collector and command
executor for the central controller. Specifically, the asso-
ciation agent model collects the status information about
itself and its connected clients, and sends it to the controller
through the communication module. In addition, the asso-
ciation agent module forwards probe request frames sent
by clients and receives the commands of AP-client associ-
ation decisions from the controller. Then, the commands are
conducted by Hostapd3, an open-source userspace program
integrated in OpenWrt for AP management.

6.1.3. Client-side Implementation

We build a PC equipped with multiple wireless NICs
(WNICs), called a client cluster, which can be utilized to
emulate multiple clients. Several client clusters can be de-
ployed in the same area, which forms a high client-density
environment. In the experiments, the Wi-OAC assigns each
WNIC installed on the client clusters to associate with a
specified AP. Once connecting to the WLAN, the corre-
sponding independent threads are created to bind with the
WNICs, respectively, and perform di�erent kinds of user
applications. Meanwhile, the QoE score can be measured for
each thread (client).

1https://compex.com.sg/shop/embedded-board/multi-slots/wpq864/
(last accessed: January 29, 2022)

2https://openwrt.org/ (last accessed: January 29, 2022)
3https://w1.fi/hostapd/ (last accessed: January 29, 2022)

6.2. QoE Metrics

To evaluate the performance of our Wi-OAC solution
in real-world scenarios, we consider three types of typical
user applications, i.e., file downloading, video playing, and
web browsing. In the experiments, the QoE metric is used
to represent the users’ actual experience and obtained by
normalizing the mean opinion scores (MOS). Specifically,
we specify a MOS evaluation model for each of the above
applications.

6.2.1. File Downloading

We use the Iperf34 tool to generate TCP downlink tra�c,
which can simulate the file downloading process, and use the
MOS-throughput logarithmic relationship [30] to calculate
the MOS. The relationship stems from the assumption that
the utility function of elastic tra�c (e.g., FTP services) is
increasing, strictly concave, and continuously di�erentiable
with respect to throughput. The MOS function for the file
downloading application is defined as follows.

�f (⌘) = a ù lg (b⌘) (13)

where �f (⌘) is the MOS function for file downloading,
parameters a and b are determined by the worst and best
quality perceived by the user, and ⌘ represents the client
throughput.

In this paper, we set the upper limit of client throughput
to be 20Mbps, and the corresponding MOS reach the maxi-
mum value of 5. While the lower limit of client throughput is
set to be 5Mbps, and the value of the corresponding MOS is
1. According to the these settings, we can obtain the values
of parameters a and b.

6.2.2. Video Playing

We use dashc [31] as the video player, which is a
software tool for dynamic adaptive streaming over HTTP
(DASH) video. It also includes a lightweight testing function
to evaluate the performance of real DASH video stream
tra�c. During video playback, the MOS following the ITU-
T Rec. P.1203 standard can be obtained by the tool dashc,
which is calculated according to the video bu�ering and
playback related logs.

6.2.3. Web Browsing

We select 37 sites from the top 50 portal sites in China
and divide them into two categories according to web pages’
actual loading speed, namely short-duration sites and long-
duration sites. Then, we use headless Chrome browser with
Node.js5 and Puppeteer6 to perform automated web brows-
ing. Although several influencing factors have been pro-
posed to account for the QoE of web browsing, the user wait-
ing time, i.e., page load time (PLT), is still the main factor.
Therefore, we use the PLT as the primary application service

4https://iperf.fr/ (last accessed: January 29, 2022)
5https://nodejs.org/en/ (last accessed: January 29, 2022)
6https://github.com/puppeteer/puppeteer (last accessed: January 29,

2022)
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Figure 8: Deployment of Wi-OAC testbed. The Wi-OAC testbed includes a central controller, 3 APs and 3 client clusters (54
clients) and is deployed in less than 10.5m2 area.

quality indicator. The ITU-T G 1030 single-page web-QoE
model [32] defines a logarithmic relationship between PLT
and MOS. According to this relationship, the MOS function
of web browsing can be defined as follows.

�w(�) =
<4.38 * 1.30 ù ln � for short-duration sites
4.79 * 1.03 ù ln � for long-duration sites

(14)

where �w(�) denotes the MOS function for web browsing
and � represents the PLT.

6.3. Deployment

On the basis of the prototype, we build a Wi-OAC
testbed. Figure 8 depicts the deployment of Wi-OAC testbed.
As shown in this figure, the network scenario is in a rectan-
gular room, where a controller, 3 APs and 3 client clusters
are deployed in less than 10.5m2 area. The details of these
devices are presented as follows:

• Controller: PC server HP EliteDesk 880 G3TWR,
Ubuntu 16.04 LTS 64bit.

• AP: Embedded board Compex WPQ864, wireless
module QCA9984, 4 antennas, Openwrt 19.07.3.

• Client cluster: PC with 18 WNICs (Intel 9260/8265/3168),
18 antennas, Ubuntu 18.04 LTS 64bit.

According to the area of the real-world scenario, the side
length of each pixel in the image-like tensor is set to 5cm.
In the experiments, all APs support 802.11ac, and each AP

is assigned an 80MHz orthogonal channel. To ensure the
normal operation of the association control mechanism de-
scribed in Section III.A, we set the same SSID and modified
beacon frames with an empty SSID field for all APs, and
block APs’ direct replies to the probe request frames.

We conduct four groups of experiments, the first three
groups are for three kinds of user applications, respectively,
i.e., file downloading, video playing, and web browsing, and
in the last group, a mixture of the three types of applications
are considered.

For each group of experiments, the DRL model is firstly
trained o�ine through the data collected from the corre-
sponding realistic scenario. After that, 20 rounds are per-
formed for each group of experiments by following the same
procedure used in the model training, and the mean value
is taken as the final result. The detailed procedure is as
follows. In each round, the controller makes 54 clients access
to the WLAN one by one in a random order. Before each
client i is associated, the controller inputs the current system
state into the model and outputs the corresponding AP-client
association decisions. After client i is associated with the
specified AP, it immediately runs the application program,
and the running period of the application program is set to
be 10 seconds. After the application program is completed,
the client obtains the QoE metric and feeds it back to
the controller. Simultaneously, the controller reassigns the
application for associated clients to run and selects the next
client i + 1 to continue associating. The above process is
repeated until all 54 clients are connected to the WLAN, and
this round of experiments ends. The controller collects the
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(a) Average client throughput (b) AP load balancing (c) User QoE

Figure 9: Performance on average client throughput, AP load balancing and user QoE for file downloading applications in
real-world experiments.

relevant data generated from this round of experiments as
the basis for judging the performance of the schemes.

6.4. Real-world Experimental Results

In the following, the results of four groups of experi-
ments are presented.

6.4.1. File downloading

The tra�c of such applications is characterized by user
demands for high-throughput and continuous data transmis-
sion. In general, as the number of clients connecting to
WLAN continues to increase, the overall network through-
put increases at a relatively rapid rate. However, when one or
several APs reach the load limit, associating clients to such
APs will not improve the overall network throughput, and
such APs are unable to meet the tra�c demand of newly
connected clients for file downloading. With uneven load
distribution, APs with a high number of associated clients
will quickly approach the load limit. Besides, the actual
available bandwidth of other clients gradually decreases
due to the channel contention among clients, which in turn
a�ects user QoE.

Figure 9(b) shows that the load balancing of the SRF
method has a large gap with the other two methods starting
from the arrival of the 12th client, so there is bound to be
a severe load imbalance in the network. With the associ-
ation of subsequent clients, the load imbalance leads to a
significant decline in the average throughput. Therefore, as
shown in Figure 9(c), after all clients are connected, the
average user QoE of the SRF method is only about 0.2, and
its performance is unacceptable.

Combined with Figure 9(a) and (b), it is obvious that
the two types of RL-based association control schemes,
i.e., LCF and Wi-OAC, significantly outperform the default
SRF method in both average throughput and load balancing,
which demonstrates that RL methods that value long-term
reward expectations have higher e�ectiveness and applica-
bility for AP-client association decision-making in high-
density WLANs.

Through further comparative analysis, we find that as
the number of clients that have connected to the networks
increases, the performance of Wi-OAC is always better than

that of LCF, and the gap is becoming larger and larger.
This trend reveals that the RL approach based on a linear
combination of features has its limitations. As shown in
Figure 9(c), the average user QoE of Wi-OAC is still above
0.8, even when all 54 clients have joined the WLAN. Hence,
it is demonstrated that the Wi-OAC can provide good user
experience for file-downloading applications.

6.4.2. Video playing

We use a DASH video source from MMSys18 datasets7,
and its average throughput requirements are lower than those
of the file downloading application. For such video playing
applications, our Wi-OAC solution also performs better than
other two schemes in terms of average client throughput, AP
load balancing, and user QoE, as shown in Figure 10.

The tra�c characteristic of DASH video is that clients no
longer generate tra�c temporarily after the video bu�ering
is completed, and the user QoE of the application is relatively
insensitive to the decrease of the actual throughput. Since
DASH always requests the highest quality video clips that
the network can support and tries to avoid the events such as
bu�er exhaustion and frame loss that may seriously impair
user experience. Hence, it significantly reduces the impact
of network deterioration on user QoE, as shown in Figure
10(c).

As shown in Figure 10(a) and (b), the performance on the
average client throughput and AP load balancing are similar
to the trend of file downloading applications. However, the
value of average client throughput is significantly smaller,
which is consistent with its throughput requirements. In
addition, the balancing index is lower in this group of exper-
iments, mainly due to its di�erent tra�c generation pattern
from that of the file downloading applications. Clients may
have zero tra�c demand at some time, which makes its
overall load balancing slightly lower than that of applications
where tra�c demands are always present.

6.4.3. Web browsing

The tra�c characteristic of web browsing applications
is that the average throughput requirements are the lowest

7http://ftp.itec.aau.at/datasets/mmsys18/ (last accessed: January 29,
2022)
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Figure 10: Performance on average client throughput, AP load balancing and user QoE for video playing applications in real-world
experiments.

(a) Average client throughput (b) AP load balancing (c) User QoE

Figure 11: Performance comparison on average client throughput, AP load balancing and user QoE for web browsing applications
in real-world experiments.

among the three types of applications involved in this paper,
and the tra�c requirements are time-variant during the web
page loading process depending on the specific web page.
For such web browsing applications, our Wi-OAC solu-
tion still performs best among these three client association
schemes on average client throughput, AP load balancing,
and user QoE, as shown in Figure 11.

It can be seen from Figure 11(a) that the average client
throughput of web browsing applications align with the
above tra�c characteristic. In addition, the tra�c of web
browsing applications is considered during the time from
when the browser is assigned a URL to when the multimedia
content is fully loaded. In fact, clients’ tra�c demands in
each step vary greatly, and the number and proportion of
static resources and dynamic resources in di�erent web
pages are also quite di�erent. Due to these di�erences,
di�erent browser processes may execute di�erent stages of
page loading at the same time. Even if they execute the same
stage, their throughput may still be di�erent. This leads to
the large di�erence on real-time throughput of clients, which
ultimately makes the AP load balancing at a low level, as
presented in Figure 11(b).

6.4.4. Mixed applications

In the group of experiments, every arriving client selects
one of the above three types of applications, and we assure
that the number of clients for each kind of applications is

roughly the same at every moment. Therefore, the tra�c
characteristics of mixed applications are the average and
synthesis of the above three types of applications’ tra�c
characteristics when they are executed separately. For ex-
ample, the trend and value of average client throughput in
Figure 12(a) are similar to the average of results in the above
three groups of experiments.

By running the mixed applications, we obtain the results
consistent with those of the three groups of experiments
described above. Besides, the scenario of densely deployed
clients running a mix of three typical applications with
high, medium, and low throughput requirements is a better
representation of the real user experience in a high client-
density environment. As is shown in Figure 12, compared
with the LCF and SRF methods, the curve representing Wi-
OAC has a slower decay rate and higher values on di�erent
aspects, i.e., average client throughput, AP load balancing,
and user QoE, while clients are continuously arriving, which
indicates that Wi-OAC can e�ectively improve user QoE in
a high client-density environment.

7. Conclusion

In this paper, we investigated the online centralized
association control problem in high-client density WLANs
with the objective of improving average user QoE metric.
To solve this issue, a deep reinforcement learning aided
solution, called Wi-OAC, was proposed, where the client
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(a) Average client throughput (b) AP load balancing (c) User QoE

Figure 12: Performance on average client throughput, AP load balancing and user QoE for mixed applications in real-world
experiments.

association control problem was regarded as a sequential
decision problem driven by client arrival events. Firstly,
we presented the framework of Wi-OAC based on MDP,
including the o�ine training and online association. With
the help of the o�ine-trained model, Wi-OAC could assign
an appropriate AP to serve each arriving client in the online
association phase. Given the complexity of state space,
the state reformulation scheme was designed to transform
the initial representation of system state into an image-like
pattern. Besides, the DDQN and dueling DQN strategies
were combined to accelerate the convergence. After that,
both simulation experiments and real-world experiments
were conducted to evaluate the performance of Wi-OAC.
In the real-world experiments, a Wi-OAC testbed was built
with 3 APs and 54 clients in less than 10.5m2 area. The
experimental results demonstrated that Wi-OAC could sig-
nificantly improve the performance in terms of average client
throughput, AP load balancing and user QoE.

In the future, we will study dynamic client migration
mechanism so as to adapt to time-variant network environ-
ment, and further optimize network performance and user
QoE.

Acknowledgment

This work was partially supported by the National Natu-
ral Science Foundation of China (Nos. 62072102, 62132009,
62072103, 61972083, 62072101, 62022024, 61972088, and
62061146001); Jiangsu Provincial Key Laboratory of Net-
work and Information Security (No. BM2003201); the Key
Laboratory of Computer Network and Information Integra-
tion of the Ministry of Education of China (No. 93K-9).

References

[1] Cailian Deng, Xuming Fang, Xiao Han, Xianbin Wang, Li Yan, Rong
He, Yan Long, and Yuchen Guo. IEEE 802.11be Wi-Fi 7: New
Challenges and Opportunities. IEEE Communications Surveys &
Tutorials, 22(4):2136–2166, 2020.

[2] Imad Jamil, Laurent Cariou, and Jean-François Hélard. E�cient
MAC protocols optimization for future high density WLANS. In
2015 IEEE Wireless Communications and Networking Conference
(WCNC), pages 1054–1059, 2015.

[3] Cisco. Cisco annual internet report (2018–2023) white paper.
[EB/OL], 2020. https://www.cisco.com/c/en/us/solutions/

collateral/executive-perspectives/annual-internet-report/

white-paper-c11-741490.pdf.
[4] Gianluca Cena, Stefano Scanzio, and Adriano Valenzano. Improving

e�ectiveness of seamless redundancy in real industrial Wi-Fi net-
works. IEEE Transactions on Industrial Informatics, 14(5):2095–
2107, 2017.

[5] Daan Weller, Raoul Dijksman Mensenkamp, Arjan van der Vegt,
Jan-Willem van Bloem, and Cees de Laat. Wi-Fi 6 performance
measurements of 1024-QAM and DL OFDMA. In ICC 2020-2020
IEEE International Conference on Communications (ICC), pages 1–
7. IEEE, 2020.

[6] Wei Li, Shengling Wang, Yong Cui, Xiuzhen Cheng, Ran Xin,
Mznah A. Al-Rodhaan, and Abdullah Al-Dhelaan. AP association for
proportional fairness in multirate WLANs. IEEE/ACM Transactions
on Networking, 22(1):191–202, 2014.

[7] Ouldooz Baghban Karimi, Jiangchuan Liu, and Jennifer Rexford.
Optimal collaborative access point association in wireless net-
works. In IEEE INFOCOM 2014-IEEE Conference on Computer
Communications, pages 1141–1149. IEEE, 2014.

[8] Fengyuan Xu, Xiaojun Zhu, Chiu C Tan, Qun Li, Guanhua Yan, and
Jie Wu. Smartassoc: Decentralized access point selection algorithm
to improve throughput. IEEE Transactions on Parallel and Distributed
Systems, 24(12):2482–2491, 2013.

[9] Omneya Issa, Ying Ge, Aizaz U Chaudhry, and Bernard Doray.
User association algorithm for throughput improvement in high-
density wireless networks. In 2017 26th International Conference on
Computer Communication and Networks (ICCCN), pages 1–8. IEEE,
2017.

[10] Phillip B Oni and Steven D Blostein. Decentralized AP selec-
tion in large-scale wireless LANs considering multi-AP interference.
In 2017 International Conference on Computing, Networking and
Communications (ICNC), pages 13–18. IEEE, 2017.

[11] Hyunsoon Kim, Woonghee Lee, Mungyu Bae, and Hwangnam Kim.
Wi-Fi seeker: A link and load aware AP selection algorithm. IEEE
Transactions on Mobile Computing, 16(8):2366–2378, 2016.

[12] Thi Ha Ly Dinh, Megumi Kaneko, Keisuke Wakao, Kenichi Kawa-
mura, Takatsune Moriyama, Hirantha Abeysekera, and Yasushi Taka-
tori. Distributed user-to-multiple access points association through
deep learning for beyond 5G. Computer Networks, page 108258,
2021.

[13] Yigal Bejerano, Seung-Jae Han, and Li Li. Fairness and load
balancing in wireless LANs using association control. IEEE/ACM
Transactions on Networking, 15(3):560–573, 2007.

[14] Wooi King Soo, Teck-Chaw Ling, Aung Htein Maw, and Su Thawda
Win. Survey on load-balancing methods in 802.11 infrastructure
mode wireless networks for improving quality of service. ACM
Computing Surveys (CSUR), 51(2):1–21, 2018.

W. Wu et al.: Preprint submitted to Elsevier Page 16 of 17



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Learning-aided Client Association Control for High-density WLANs

[15] Rohan Murty, Jitendra Padhye, Ranveer Chandra, Alec Wolman, and
Brian Zill. Designing high performance enterprise Wi-Fi networks. In
Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), volume 8, pages 73–88, 2008.

[16] Jun Zhang, Guangxing Zhang, Qinghua Wu, Binbin Liao, and Gao-
gang Xie. A data-driven approach to client-transparent access selec-
tion of dual-band WiFi. IEEE Transactions on Network and Service
Management, 16(1):321–333, 2018.

[17] Alessandro Raschellà, Faycal Bouhafs, Michael Mackay, Qi Shi, Jorge
Ortín, José Ramón Gállego, and Maria Canales. A dynamic access
point allocation algorithm for dense wireless LANs using potential
game. Computer Networks, 167:106991, 2020.

[18] Suzan Bayhan, Estefanía Coronado, Roberto Riggio, and Anatolij
Zubow. User-AP association management in software-defined
WLANs. IEEE Transactions on Network and Service Management,
17(3):1838–1852, 2020.

[19] Xi Huang, Shuang Zhao, Xin Gao, Ziyu Shao, Hua Qian, and Yang
Yang. Online user-AP association with predictive scheduling in
wireless caching networks. IEEE Transactions on Mobile Computing,
pages 1–1, 2020.

[20] Wangkit Wong, Kam-Wa Chau, and S.-H. Gary Chan. Joint client
association and random access control for MU-MIMO WLANs. IEEE
Transactions on Mobile Computing, 19(12):2818–2832, 2020.

[21] Blas Gómez, Estefanía Coronado, José M Villalón, Roberto Riggio,
and Antonio Garrido. WiMCA: multi-indicator client association in
software-defined Wi-Fi networks. Wireless Networks, pages 1–17,
2021.

[22] Xin Jian, Langyun Wu, Keping Yu, Moayad Aloqaily, and Jalel Ben-
Othman. Energy-e�cient user association with load-balancing for
cooperative IIoT network within B5G era. Journal of Network and
Computer Applications, page 103110, 2021.

[23] Wangkit Wong, Avishek Thakur, and S.-H. Gary Chan. An ap-
proximation algorithm for AP association under user migration cost
constraint. In IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, pages 1–9,
2016.

[24] Apurv Bhartia, Bo Chen, Derrick Pallas, and Waldin Stone. Client-
marshal: Regaining control from wireless clients for better expe-
rience. In The 25th Annual International Conference on Mobile
Computing and Networking, pages 1–16, 2019.

[25] Fan Meng, Peng Chen, and Lenan Wu. Power allocation in multi-user
cellular networks with deep Q learning approach. In ICC 2019-2019
IEEE International Conference on Communications (ICC), pages 1–6.
IEEE, 2019.

[26] Shangxing Wang, Hanpeng Liu, Pedro Henrique Gomes, and Bhaskar
Krishnamachari. Deep reinforcement learning for dynamic multi-
channel access in wireless networks. IEEE Transactions on Cognitive
Communications and Networking, 4(2):257–265, 2018.

[27] Mohamed Amine Kafi, Alexandre Mouradian, and Véronique Vèque.
On-line client association scheme based on reinforcement learning
for WLAN networks. In 2019 IEEE Wireless Communications and
Networking Conference (WCNC), pages 1–7. IEEE, 2019.

[28] Yiding Yu, Taotao Wang, and Soung Chang Liew. Deep-
reinforcement learning multiple access for heterogeneous wireless
networks. IEEE Journal on Selected Areas in Communications,
37(6):1277–1290, 2019.

[29] Thi Ha Ly Dinh, Megumi Kaneko, Keisuke Wakao, Kenichi Kawa-
mura, Takatsune Moriyama, Hirantha Abeysekera, and Yasushi
Takatori. Deep reinforcement learning-based user association in
sub6GHz/mmWave integrated networks. In 2021 IEEE 18th Annual
Consumer Communications & Networking Conference (CCNC),
pages 1–7. IEEE, 2021.

[30] Andre B Reis, Jacob Chakareski, Andreas Kassler, and Susana
Sargento. Distortion optimized multi-service scheduling for next-
generation wireless mesh networks. In 2010 INFOCOM IEEE
Conference on Computer Communications Workshops, pages 1–6.
IEEE, 2010.

[31] Aleksandr Reviakin, Ahmed H Zahran, and Cormac J Sreenan. dashc:
A highly scalable client emulator for DASH video. In Proceedings of
the 9th ACM Multimedia Systems Conference, pages 409–414, 2018.

[32] ITUT Rec. G. 1030-Estimating end-to-end performance in IP net-
works for data applications. International Telecommunication Union,
Geneva, Switzerland, 42, 2005.

[33] Han Zou, Ming Jin, Hao Jiang, Lihua Xie, and Costas J Spanos.
WinIPS: WiFi-based non-intrusive indoor positioning system with
online radio map construction and adaptation. IEEE Transactions on
Wireless Communications, 16(12):8118–8130, 2017.

[34] Xudong Cao. A practical theory for designing very deep convolutional
neural networks. Unpublished Technical Report, 2015.

[35] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforce-
ment learning with double Q-learning. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, page 2094–2100, 2016.

[36] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot,
and Nando Freitas. Dueling network architectures for deep reinforce-
ment learning. In International Conference on Machine Learning,
pages 1995–2003, 2016.

[37] Cisco. Wireless high client density design guide. [EB/OL],
2018. https://www.cisco.com/c/en/us/td/docs/wireless/controller/

technotes/8-7/b_wireless_high_client_density_design_guide.html.
[38] Vinko Erceg, Laurent Schumacher, Persefoni Kyritsi, et al. IEEE

802.11-03/940r4 TGn Channel Models. IEEE P802, 11, 2004.
[39] Andrew von Nagy. Wi-Fi SNR to MCS data rate mapping refer-

ence. [EB/OL], 2014. http://revolutionwifi.blogspot.com/2014/09/

wi-fi-snr-to-mcs-data-rate-mapping.html.
[40] Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. A

quantitative measure of fairness and discrimination. Eastern Research
Laboratory, Digital Equipment Corporation, Hudson, MA, 1984.

W. Wu et al.: Preprint submitted to Elsevier Page 17 of 17


	Learning-aided client association control for high-density WLANs
	CRediT authorship contribution statement


