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A B S T R A C T

As wireless local area network (WLAN) continues to become popular, there is an increasing number of clients
with huge data traffic demands. Especially, some high client-density environments are emerging, such as
industrial plants, stadiums, and event centers, which poses significant challenges in terms of client association
control. Under such environments, conventional client-side solutions that select access points (APs) according
to simple indicators such as signal strength may result in poor network performance, and although some
centralized association control mechanisms are proposed, it is still difficult that a large amount of complex
global network status information needs to be effectively and efficiently utilized. To meet these challenges, we
investigate the online centralized association control problem that aims to improve user quality of experience
(QoE), and propose a deep reinforcement learning (DRL) aided solution, called Wi-OAC, where an image-like
state pattern is designed to achieve state reformulation for deep Q-network (DQN), and the double DQN and
dueling DQN strategies are combined to improve convergence speed. On the basis of offline training, Wi-OAC
can determine the proper AP-client associations for the arriving clients. Both simulation experiments and real-
world experiments have been conducted to validate the effectiveness of Wi-OAC. In real-world experiments,
we build a Wi-OAC testbed including 3 APs and 54 clients in less than 10.5 m2 area, and the results show
that Wi-OAC can significantly improve the performance on the client throughput, AP load balancing and user
QoE.
1. Introduction

With the explosive growth of user devices, 802.11 wireless local
area networks (WLANs) have become one of the most popular wire-
less solutions to meet the ever-increasing demands for wireless traffic
and user experience, which accounts for a considerable portion of
global mobile traffic growth [1]. Nowadays, WLANs have been widely
deployed worldwide, providing users with more convenient and higher-
speed wireless services [2]. According to a recent forecast from Cisco,
there will be nearly 628 million public WiFi hotspots by 2023 [3].
Consequently, the proliferation of WLANs leads to the generation of
a large number of high client-density scenarios such as industrial
plants, stadiums, and event centers, where many clients are expected
to connect to access points (APs) within a small space.

Fig. 1 presents a typical industrial scenario where a huge number
of client devices are densely deployed inside, such as environmental
sensors, manufacturing facilities and user terminals. Obviously, regard-
ing such a scenario, wireless networking is more suitable than wired
networking. On the one hand, the cable-connected devices cannot
support mobility well, making it inconvenient for people who need
to move constantly. Besides, for wired networking, dense cables need
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to be deployed to achieve such a huge number of connections, which
is expensive and unsafe for the industrial environment. On the other
hand, WLANs can perform well in the scenario due to its high data
rate, ease of deployment, and cost efficiency. Meanwhile, most of
devices can easily access to the WLAN by inherent or additionally
equipped WiFi modules. Therefore, the WLAN is a promising solution to
provide wireless connections for heterogeneous devices in the industrial
environment [4].

However, it is very challenging to guarantee the client traffic de-
mands in such a high client-density scenario. Although the new genera-
tion WLAN technology (also known as WiFi 6 or 802.11ax) significantly
improves the average throughput in densely deployed environments
through advanced physical-layer and medium access control (MAC)
sub-layer technologies [5], appropriate AP-client association manage-
ment is still necessary to further improve the spectrum utilization and
client throughput due to the scarcity of spectrum resources. Neverthe-
less, conventional client-side association mechanisms based on simple
indicators such as received signal strength indication (RSSI) may lead
to an unbalanced situation where some APs are overloaded while others
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Fig. 1. High client density in industrial wireless networks. In a industrial plant, a large
number of client devices are densely deployed and served by multiple APs, including
different types of environmental sensors, manufacturing facilities and user terminals.

are almost idle [6,7]. Even though the metrics of AP selection are
improved [8–12], the performance is still unsatisfactory. In this case,
spectrum resources of the overloaded APs are shared by too many
clients [13], thus resulting in a significant throughput degradation for
the clients served by the overloaded APs [14].

To this end, some centralized association control mechanisms [15–
17] have been proposed to solve this issue by determining the AP-
client associations on the infrastructure side instead of client side. By
dealing with the global network status information collected from the
controlled APs such as their capabilities, operating channels and associ-
ated client lists, these infrastructure-side solutions can obtain a global
view of the WLAN, and usually outperform the client-side solutions.
However, given the size and complexity of the collected data in high
client-density WLANs, these existing mechanisms cannot handle such a
large amount of complex global network status information efficiently,
which undoubtedly degrades their performance significantly. To bridge
this gap, we apply the deep reinforcement learning (DRL) method into
the association control mechanism, where a large amount of data is
used to train the association control policies without a comprehensive
analysis of the complex data. On this basis, we develop an online
association control scheme for the high client-density WLANs, which
assigns appropriate APs for the arriving clients dynamically with the
goal of improving user quality of experience (QoE).

This paper investigates the online centralized AP-client association
control problem in high client-density WLANs aimed at improving
user QoE, while considering the elimination of overloaded APs. For
this purpose, we first model the association control problem as the
Markov decision process (MDP), the primary analysis framework of
reinforcement learning (RL), and define the state, action, reward and
policy accordingly. Considering the complexity of the state space in
the high client-density environment, a deep neural network (DNN) is
introduced to handle the dimensionality curse, which is challenging to
be solved in traditional RL. Furthermore, by combining the advantages
of deep learning (DL) and RL, we propose a deep reinforcement learning
aided association control scheme, called Wi-OAC, which can make
online association decisions for the dynamic and high-dimensional
environment with the help of the offline trained model through the data
of APs and associated clients collected from real-world scenarios. The
main contributions of this paper can be summarized as follows:

• We consider the challenges of centralized association control for
high client-density WLANs, and propose a DRL-aided solution
called Wi-OAC to improve user QoE, where the global network
status information collected from real-world scenarios are utilized
by model training.

• Since the state space of DRL model is complicated, a state re-
formulation scheme is designed to transform the initial state
representation into an image-like pattern, and the convolutional
neural network (CNN) is utilized to effectively extract features
2

such as AP/client positions, existing associations, and throughput
of associated clients from the image-like tensors. Moreover, the
double deep Q-network (DDQN) and dueling DQN strategies are
combined to accelerate the convergence.

• Both simulation experiments and real-world experiments are con-
ducted for performance evaluation. In real-world experiments, a
Wi-OAC testbed with 3 APs and 54 clients is built in less than
10.5m2 area, and the experimental results demonstrate that our
solution can significantly improve the performance in terms of
average throughput, AP load balancing, and user QoE.

The rest of the paper is organized as follows. Section 2 briefly
provides some related work. In Section 3, we introduce the system
model and formulate the association control problem in high client-
density environment. Then in Section 4, the framework of Wi-OAC with
system state reformulation and implementation details are presented.
We validate the performance of Wi-OAC through simulation and real-
world experiments in Sections 5 and 6 respectively. Finally, we draw
conclusions and summarize this paper in Section 7.

2. Related work

AP-client association plays an important role in improving WLAN
performance and user experience. Hence, much research effort has been
devoted to designing AP-client association solutions in recent years. We
categorize the related work into two main strands. The former focuses
on the AP-client association mechanisms in WLANs, while the latter
considers utilizing the RL method for AP-client association decision
making.

2.1. AP-client association mechanisms

The existing AP-client association mechanisms can be divided into
two categories: the client-side AP selection [8–12] and the infrastruc-
ture-side association control [15–24].

Client-side AP Selection: The default association mechanism of
the 802.11 standard is a typical client-side AP selection mechanism,
where clients always select the APs with the highest RSSI. As mentioned
above, the default mechanism cannot provide satisfactory network ser-
vice, and some works have been done to improve its performance. Xu
et al. [8] propose an AP selection mechanism, called SmartAssoc, which
makes clients select the best candidate AP according to the RSSI and AP
load. In SmartAssoc, clients generate modified probe request traffic to
estimate the load of AP candidates without association. Issa et al. [9]
also propose an AP selection algorithm that associates the client to an
AP based on AP load as well as the RSSI value of its beacon, where the
AP load information can be obtained through modified beacon frames.
Oni et al. [10] let the client associate with the AP with the highest
Signal-to-Interference-plus-Noise Ratio (SINR), which characterizes the
degree of interference of the adjacent basic service sets to the target
AP and is calculated by physical layer rate, received power, and the
number and size of frames received from other interfering sources. In
addition, Kim et al. [11] predict the channel interference level and AP
load status by continuously detecting the RSSI and receiving interval
of beacon frames. As APs always send beacon frames periodically, the
data used for decision making is easy to obtain and the overhead is
negligible. With the goal of maximizing the global throughput subject
to application QoS and AP load constraints, Dinh et al. [12] propose
distributed user-to-multiple AP association methods that allow users to
make more intelligent association decisions by leveraging the DQN and
DDQN-based DRL frameworks.

However, the performance of these client-side association mecha-
nisms is still limited by local information, since a single client cannot
obtain the global network status information. Moreover, the improved
mechanisms inevitably require modifications to the clients, which make
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them impossible to be transparent to users and are challenging to be
widely popularized and applied.

Infrastructure-side Association Control: For the infrastructure-
side association control mechanism, a central controller is usually
utilized to make central AP-client association decisions, which assigns
a specified AP to serve each client. Murty et al. [15] introduce a central
controller to make association decisions and only force the specified AP
to reply with probe response frames so as to make itself visible to the
client. Likewise, Zhang et al. [16] use a similar mechanism to decide
the frequency bands for clients in the dual-band WLAN. Raschellà
et al. [17] propose an AP association algorithm which relies on a
centralized potential game developed in a software-defined wireless
network framework, while considering external interference. In this
algorithm, AP-client associations are decided according to the fitting-
ness factor, a performance parameter with a value ranging between
0 and 1, which represents the suitability of the AP to meet a client’s
QoS demand. Given the signal quality, AP loads and minimum require-
ments for user traffic, Bayhan et al. [18] propose several AP-client
association schemes based on a software-defined networking (SDN)
controller, and leverage link-layer multicasting to handle users with
same content requests so as to improve the network utilization. Huang
et al. [19] formulate the online AP-client association and resource
allocation problem in wireless caching networks as a stochastic network
optimization problem and propose an effective scheme targeted at the
minimal delivery latencies and maximum network utilities such as
throughput. Wong et al. [20] jointly consider association control and
random access control to achieve the maximum proportional fairness of
client throughput. Gómez et al. [21] propose a SDN-based client asso-
ciation and channel assignment scheme that considers signal strength,
channel occupancy and AP load to improve the utilization of available
wireless resources and avoid the need for densification. Jian et al. [22]
investigate the user association problem under the multi-association
scenarios and design the mechanism for load balancing and energy
efficiency by jointly considering user association, power allocation and
edge node deployment.

Moreover, some researchers [23,24] consider adjusting AP-client
associations through client migrations. Wong et al. [23] propose an
approximation algorithm to optimize AP re-association by maximizing
the minimum user throughput with a certain migration cost constraint.
Bhartia et al. [24] divide APs into different cells and APs in the
same cell broadcast the same basic service set identifier (BSSID) and
share global information while operating on different channels. In this
case, to improve the network performance, APs send unicast channel
switch announcement (CSA)-enabled beacon frames and steer associ-
ated clients to other suitable APs in the same cell dynamically based
on an innovative protocol called FreeSteer.

As the infrastructure-side association control mechanisms usually
need very little or even no modification on the clients, they are user-
transparent and can be easily deployed in actual scenarios. More im-
portantly, by obtaining a global perspective of the WLAN through a
large amount of network status information, these centralized mech-
anisms can make more reasonable association decisions for clients.
However, these existing mechanisms may not be able to tackle new
challenges in high client-density environments. For example, to make
wiser association decisions, the controller needs to collect network
status information from APs to obtain a global view of the WLAN.
However, given the densely deployed client devices and APs in high
client-density WLANs, there is a large amount of complex network sta-
tus information and those existing infrastructure-side solutions cannot
handle it efficiently. Besides, high client-density causes more frequent
user mobility and more interference. That is, the wireless environment
will become more dynamic, making it difficult for those mechanisms to
understand the network status and make proper association decisions.
Thus, our solution introduces the DRL method to handle the association
control problem in high client-density WLANs, where a large amount
of global network status information can be used to train the model.
Besides, we design a state reformulation scheme to further help with
3

feature extraction and model training.
2.2. RL based association control

Due to the capability for dealing with complex problems in an
unknown environment and adapting to the dynamic system state, RL
has received widespread attention over the last few years and is applied
in many problems such as dynamic resource allocation problems [25]
and sequential decision problems [26]. Given the dynamics of wireless
environment, some RL-based association control mechanisms have been
proposed. Kafi et al. [27] use a linear combination of features (LCF) to
approximate the Q-value function in the association control problem,
which improves the performance and efficiency of RL. There are also
some solutions [25,26,28,29] that introduce DNN to solve the curse
of dimensionality. Meng et al. [25] use DRL to deal with the power
allocation problem in wireless cellular networks and prove the good
generalization ability of their method. Wang et al. [26] study the prob-
lem of dynamic multichannel access in wireless networks and use DRL
to learn a policy that could maximize the expected long-term traffic for
successful transmission. The results show that their method can achieve
the best performance in complex situations. Yu et al. [28] propose a
DRL-based MAC protocol for heterogeneous wireless networks, and the
goal is to learn the best channel access policy without understanding
the operating principles of the MACs of the coexisting networks. Dinh
et al. [29] propose a distributed DRL method based on DQN to solve the
problem of joint AP association and beamforming in an integrated sub-
6 GHz/mm Wave system, which aimed at maximizing the long-term
throughput, while satisfying a large number of heterogeneous user QoS
requirements.

Therefore, the existing methods demonstrate that RL can deal with
the unknown dynamics and prohibitive computation of wireless envi-
ronments. However, with the objective of maximizing the aggregate
throughput, most of them ignore the fact that client traffic demands
could be different according to the application types. Besides, the pro-
posed models are mainly trained and evaluated through simulation data
and experiments. On this basis, we propose a DRL-aided association
control solution for high client-density WLANs. By defining different
QoE evaluation models for different applications, our solution can make
online association decisions for the arriving clients so as to maximize
the average user QoE metric.

3. System model and problem formulation

In this section, we first introduce the system model and then formu-
late the client association control problem for high-density WLANs.

3.1. System model

We consider a multi-AP WLAN with a central controller, as depicted
in Fig. 2. The number of APs is denoted by 𝑀 , and the set of APs
s represented by {1, 2,… ,𝑀}. In this paper, we adopt a centralized

association control mechanism based on active scanning [15]. When
client 𝑖 arrives, the controller will aggregate the client’s requests and
AP status information from multiple APs and then make association
decisions in a centralized manner. Note that we only consider the
association decisions when clients arrive, and for client departure
events, given the complexity, we make no adjustment to the AP-client
association relationship every time a client leaves the WLAN. However,
the influence of these client departure events on network status can
be well reflected once an arriving client requests for association. Since
clients arrive frequently in high client-density WLANs, the proposed
mechanism can provide timely feedback for the client departure events.
Fig. 2 describes the association control process, including the following
four steps:

1. The APs within the scanning range of client 𝑖 receive probe

request frames and make no response.
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Fig. 2. A multi-AP WLAN with centralized association control mechanism. The central controller makes AP-client association decisions based on the global network status information
collected by multiple APs, and assigns a specified AP to serve each arriving client.
Table 1
Notations and corresponding descriptions.

Notation Description Notation Description

𝑀 Number of APs 𝑥𝑡𝑖 AP that serves client 𝑖 at time step 𝑡

𝑋𝑡 AP-client association vector of time step 𝑡 𝑁 𝑡 Number of connected clients at time step 𝑡

ℎ𝑡𝑖 Throughput of client 𝑖 at time step 𝑡 𝐻 𝑡 Client throughput vector of time step 𝑡

𝐿(𝑑) Signal path loss of distance 𝑑 𝜎1 , 𝜎2 Parameters of path loss model
𝑑𝐵𝑃 Breakpoint distance 𝑖𝑡 Event of client 𝑖’s arrival at time step 𝑡

𝛺𝑡 Average user QoE of time step 𝑡 𝑞𝑡𝑖 User QoE of client 𝑖 at time step 𝑡

𝑅𝑡𝑖,𝑗 RSSI between client 𝑖 and AP 𝑗 at time step 𝑡 𝜃 Clear channel assessment threshold
𝑃 AP transmit power 𝑑𝑡𝑖,𝑗 Distance between client 𝑖 and AP 𝑗 at time step 𝑡

 State set  Action set
𝑡 Reward function of time step 𝑡 𝛱 Policy set
𝑠𝑡, 𝑎𝑡, 𝑟𝑡 System state, action and reward at time step 𝑡 𝛾 Discount factor in RL
𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) State transition probability from 𝑠𝑡 to 𝑠𝑡+1 after 𝑎𝑡 𝛼 Learning rate
𝑅𝑡 RSSI vector of time step 𝑡 𝐴𝑈 𝑡 Airtime utilization (AU) vector of time step 𝑡

𝑂𝑡
𝐴, 𝑂𝑡

𝐶 Position matrix of APs/clients of time step 𝑡 𝐸𝜋 Long-term reward expectation
𝑡
𝐻 Set of discrete values for throughput of time step 𝑡 𝑡

𝑅 Set of discrete values for RSSI of time step 𝑡

𝑡
𝐴𝑈 Set of discrete values for AU of time step 𝑡 𝑡

𝑂 Set of discrete values for positions of time step 𝑡

𝜓(𝑠𝑡) Image tensor of system state at time step 𝑡 𝑓 Balance index
𝑗 Load of AP j  Gaussian white noise in the environment
𝑊 , 𝐿 Width and length of scenarios 𝜖𝑠, 𝜖𝑓 Initial/Final exploration probability
2. These APs forward the requests of client 𝑖 to the controller, and
then the controller will select an appropriate AP for client 𝑖 based
on global information.

3. The controller only notifies the specified AP of the decision
result.

4. The specified AP sends probe response frames when the client 𝑖
starts the next round of scanning.

The above mechanism ensures that only one AP is visible to arriving
client 𝑖.

We consider the discrete time steps in our system, and assume that
there is only one arriving client at each time step 𝑡. For each client, it
will be associated with one AP when accessing to the network. In order
to represent the AP-client association, we define 𝑥𝑡𝑖 = 𝑗 to indicate that
client 𝑖 is associated with AP 𝑗 ∈ {1,… ,𝑀}, where 𝑥𝑡𝑖 is an element in
AP-client association vector 𝑋𝑡 of time step 𝑡. For the current time step
𝑡, the total number of connected clients in the network is denoted by
𝑁 𝑡, and the set of clients is represented by {1, 2,… , 𝑁 𝑡}.

We mainly focus on downlink traffic in this work as it accounts
for the vast majority of the overall WLAN traffic. Thus, the downlink
throughput of client 𝑖 at time step 𝑡 is denoted by ℎ𝑡𝑖, and the corre-
sponding throughput vector is denoted by 𝐻 𝑡 = {ℎ𝑡 𝑡 𝑡
4

1, ℎ2,… , ℎ𝑁}. The
user QoE metric of each client is represented by 𝑞𝑡𝑖 , and its specific
definition varies from different application scenarios [30–32].

The positions of APs are fixed after the deployment and easy to
acquire for the network administrators. Owing to the existence of
multiple APs, each client’s position can be estimated by WiFi indoor
positioning [33]. Therefore, the positions of the APs and clients can be
used as inputs for association decision-making.

The notations in this paper are summarized in Table 1.

3.2. Problem formulation

Consider that in a high client-density environment, APs and clients’
positions are arbitrary, and the arrival of clients is uncertain. In our
work, there is one arriving client at each time step, and thus the client
association control problem can be regarded as a sequential decision
problem, which can be solved in the following manner. A decision
agent interacts with a discrete event dynamic system sequentially. In
each step, the dynamic system will be in a certain state. The agent will
observe the current state and select one action from a given action set
according to the agent’s policy. Then, the dynamic system will enter

the next state and obtain a corresponding reward. In this way, the state
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transition and action selection are carried out iteratively to maximize
the benefits.

Therefore, we model the WLAN system as a discrete event dynamic
system driven by client arrival events. Specifically, event 𝑖𝑡 represents
that client 𝑖 arrives at the network at time step 𝑡. Once a new arrival
event 𝑖𝑡 occurs, the controller runs the association control algorithm
and selects the appropriate AP for client 𝑖, and then the time step
becomes 𝑡 + 1.

In this work, we investigate the online client association control
problem for high-density WLANs. For the current time step 𝑡, the
association control problem is to maximize the current average user
QoE metric by determining the proper AP-client association for the
client arrival event 𝑖𝑡, while considering the association constraints,
clear channel assessment (CCA) constraints and RSSI constraints. Thus,
the problem can be formulated as follows:

max 𝛺𝑡 =
∑𝑁 𝑡

𝑖=1 𝑞
𝑡
𝑖

𝑁 𝑡 (1)

𝑠.𝑡. 𝑥𝑡𝑖 = 𝑗 ∈ {1,… ,𝑀}, ∀𝑖 ∈ {1,… , 𝑁 𝑡} (2)

𝑅𝑡
𝑖,𝑥𝑡𝑖

> 𝜃, ∀𝑖 ∈ {1,… , 𝑁 𝑡} (3)

𝑅𝑡𝑖,𝑗 = 𝑃 − 𝐿(𝑑𝑡𝑖,𝑗 ), ∀𝑖 ∈ {1,… , 𝑁 𝑡},

∀𝑗 ∈ {1,… ,𝑀} (4)

where Eq. (1) reveals the goal of maximizing the current average user
QoE metric at time step 𝑡. Since client demands may vary due to
different application types, we define different QoE evaluation models
for three common application types and the user QoE metric at each
time step is determined by the applications used by the arriving client
currently. Eq. (2) presents the association constraints, that is, client 𝑖 is
associated with only one AP at time step 𝑡. Specifically, 𝑥𝑡𝑖 represents
he AP that is associated with the client 𝑖 at time step 𝑡. Eq. (3) expresses
he CCA constraints, namely, the RSSI between the arriving client 𝑖 and
P 𝑥𝑡𝑖 must be higher than CCA threshold 𝜃. Finally, the RSSI constraints
re specified by Eq. (4), that is, the RSSI value is determined by the AP’s
ransmit power 𝑃 and path loss 𝐿(𝑑𝑡𝑖,𝑗 ) based on the distance between
lient 𝑖 and AP 𝑗 at time step 𝑡.

. Wi-OAC

In this section, we propose a deep reinforcement learning aided as-
ociation control solution called Wi-OAC for high client-density WLANs.
irstly, we present the framework of Wi-OAC based on MDP, including
he definitions of state, action, reward and policy. Due to the com-
lexity of the state space, we design a state reformulation scheme
hat transforms the system state to an image-like pattern. Finally, the
mplementation details of the Wi-OAC solution are illustrated.

.1. Wi-OAC framework

In Section 3.2, the client association control problem is regarded
s a sequential decision problem, which is suitable to be described by
DP, a set of sequential decision processes with Markov attributes. At

ime step 𝑡, by observing state 𝑠𝑡 ∈ , the agent takes action 𝑎𝑡 ∈ 
nd interacts with the environment to gain the corresponding reward.
fter the reward 𝑟𝑡 is obtained, the environment moves to the next state
𝑡+1. The goal of MDP is to find a policy that maximizes the expected
umulative reward, and the cumulative discounted reward function 𝑡
s defined as

𝑡 =
∞
∑

𝜏=0
𝛾𝜏𝑟𝑡+𝜏+1 (5)

here 𝛾 ∈ [0, 1) is a discount factor that trades off the importance of
mmediate and future rewards, and 𝑟𝑡+𝜏+1 denotes the reward at time
tep 𝑡 + 𝜏 + 1.
5

t

In this paper, we use a model-free approach where the state transi-
ion probability 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) is unknown. Generally, Q-learning is used
n a typical RL method to learn excellent action strategies gradually so
s to maximize the expected cumulative reward in the case of knowing
othing about the environment. To perform an action according to
given state, Q-learning estimates the utility function (i.e., Q-value

unction) gradually according to the following rules:

(𝑠𝑡, 𝑎𝑡) ← (1 − 𝛼)𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟𝑡 + 𝛾 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′)) (6)

here 𝛼 is the learning rate, and 𝑄(𝑠𝑡, 𝑎𝑡) indicates the estimated long-
erm reward after taking action 𝑎𝑡 at state 𝑠𝑡. Based on the optimization
oal described in Eq. (1), we define the state, action, and reward in the
-learning as follows.

.1.1. State
The state is the abstraction of the environment, and the basis

or the agent to choose actions. According to the association control
roblem described in Section 3.2, the current association relationship
nd throughput of clients are the basic information that the agent
hould obtain to perceive the current environment. Moreover, some
vailable information has also been proved to be suitable for the criteria
n association control [8,9,11], including the RSSI between the arriving
lient and APs, and the load of APs. Besides, we consider positions of
Ps and the arriving client in this paper, which may be useful for wiser
ecision-making. After the agent obtains the above information from
he environment, it will form the system state defined as follows.

𝑡 = (𝑋𝑡, 𝑅𝑡, 𝐴𝑈 𝑡,𝐻 𝑡, 𝑂𝑡𝐴, 𝑂
𝑡
𝐶 ) (7)

here 𝑋𝑡 is the current association vector, 𝑅𝑡 is the RSSI vector, 𝐴𝑈 𝑡

s the AU vector used to measure the load of APs, 𝐻 𝑡 is the throughput
ector, and 𝑂𝑡𝐴 and 𝑂𝑡𝐶 are the position matrices of APs and the arriving
lient, respectively.

.1.2. Action
The agent needs to select an action based on the system state 𝑠𝑡

ccording to its policy. For the client association control problem, the
gent’s action is defined as the AP that is assigned to serve the arriving
lient at time step 𝑡, that is, 𝑎𝑡 ∈  and 𝑎𝑡 is defined as follows.

𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝑄(𝑠𝑡, 𝑎) (8)

.1.3. Reward
In our work, the goal is to maximize the average user QoE metric at

ime step 𝑡. Thus, the single-step reward 𝑟𝑡 depends on the increment
f average user QoE metric caused by the action 𝑎𝑡, i.e.,

𝑡 = 𝛺𝑡+1 −𝛺𝑡 (9)

.1.4. Policy
In MDP, the policy 𝜋 is employed to determine the next action based

n the current state. Thus, our goal is to find the optimal policy 𝜋∗

ith the maximum long-term reward expectation 𝐸𝜋 , which is defined
s follows:

∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋∈𝛱𝐸𝜋 [
∞
∑

𝑡=0
𝛾 𝑡𝑟𝑡|𝑠0] (10)

Remarkably, the traditional Q-learning algorithm forms the Q-value
unction gradually by constructing and updating the Q-table. However,
ccording to the definition of the state mentioned above, there are
ome continuous variables in the system state, which can cause infinite
ows in the Q-table. A feasible solution is to discretize the continuous
ariables. Nevertheless, for a high client-density WLAN, the state space
fter discretization may be unacceptably large. In this case, even if the
-table is constructed, it is difficult to update and converge it.

An alternative is DNN, which can extract complex non-linear fea-

ures from the input data, and is suitable for addressing RL problems
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Fig. 3. The overall framework of Wi-OAC, where the DQN model receives the reformulated state as an input, outputs an action and calculates the corresponding reward. In
the DQN model, Q-values for each action are calculated in the Q-network and stored in replay memory in the form of experience tuples. Besides, a batch of experience tuples
is sampled randomly and periodically to calculate the loss and update the weights in the Q-network. The weights are copied to the target Q-network for every certain steps to
accelerate the convergence.
with a large state space. Therefore, we use DNN to approximate the
Q-value function, as shown in the following formula:

𝑄(𝑠, 𝑎) ≈ 𝑞(𝑠, 𝑎;𝜔) (11)

where 𝑞(𝑠, 𝑎;𝜔) is the approximation given by the DNN, and 𝜔 is a
parameter vector containing the weights of the edges in the DNN.

Thus, by combining the advantages of the DL and RL, we propose
the Wi-OAC framework to handle the client association control prob-
lem. Fig. 3 presents the overall framework of Wi-OAC that consists of
two main parts, the offline training and the online association. During
the offline training, we use the data collected from APs and associated
clients under real-world scenarios to train the DQN model. Specifically,
DQN is used as an approximator to receive the state as an input, select
an action according to actions’ Q-values and obtain the corresponding
reward. Meanwhile, 𝑞(𝑠, 𝑎;𝜔) is updated accordingly by adjusting the
weights in the DQN to learn the optimal association policy gradually.
After that, in the online association, by leveraging the trained model,
the controller specifies an appropriate AP for each arriving client and
completes the corresponding AP-client association.

4.2. State reformulation

On the basis of the Wi-OAC framework, we reformulate the system
state as an image-like pattern, where different semantic information can
be encoded in different channels. To be exact, the transformed state is
called an image-like tensor 𝜓(𝑠𝑡). We choose to reformulate the state
mainly based on the following three considerations.

• The effectiveness and efficiency of the DRL algorithm depend
on whether the representation of system state is reasonable. To
ensure that DQN can extract features from the input effectively,
it is necessary to transform the initial representation of system
state into a structured representation.

• CNN is suitable for extracting the spatial features of images
and the logical relationship between pixels, and the information
contained in them can guide the decision-making of association
control. Thus, to make full use of CNN, the reformulation process
is conducted to transform the input into an image-like tensor
𝜓(𝑠𝑡).

• The size of 𝜓(𝑠𝑡) can be well fixed, which means that no matter
how the number of APs changes, and how the clients join or leave,
the size of 𝜓(𝑠 ) does not need to be changed.
6

𝑡

Fig. 4. State reformulation and DQN structure. The system state is reformulated into
an image-like tensor with five channels where the global network status information is
encoded. On the basis of the image-like tensor, Q-values for each action are estimated
by DQN, which mainly contains 2 convolutional layers, 2 pooling layers, and 3 fully
connected layers. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

We complete the reformulation through two-dimensional represen-
tation of the environment and discretization of space. The size of
𝜓(𝑠𝑡) is 𝑊 × 𝐿 × 5, where 𝑊 and 𝐿 are the width and length of the
environment, respectively, and the number of image channels is 5.
Therefore, there are 𝑊 × 𝐿 pixels in each image channel. Each pixel
in the image is a grid, representing a certain size of square space in the
actual environment. Different status information about APs and clients
in this grid can be expressed in different channels.

Fig. 4 intuitively depicts the reformulated system state, where cir-
cles in different colors represent clients with different statuses, i.e., the
red, green, and blue circles correspond to the unconnected, connect-
ing, and connected clients, respectively. Specifically, the information
encoded in each channel is defined as follows:

• AP-position channel: This channel indicates the positions of
deployed APs. For each pixel, if there is an AP at its corresponding
position, let its value be the AP’s ID.

• AU channel: This channel indicates the airtime utilization of APs.
For each pixel, if there is an AP at its corresponding position, let
its value be the AP’s AU.

• Association channel: This channel indicates the association re-
lationship between APs and connected clients. For each pixel, if
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Table 2
Specific settings of DQN.

Layer Input shape Kernel Activation Output shape

Conv1 𝑊 × 𝐿× 5 3 × 3, 10 ReLU (𝑊 − 2) × (𝐿 − 2)× 10
Pool1 (𝑊 − 2) × (𝐿 − 2)× 10 2 × 2 None ⌈

𝑊 −2
2

⌉ × ⌈

𝐿−2
2

⌉× 10
Conv2 ⌈

𝑊 −2
2

⌉ × ⌈

𝐿−2
2

⌉× 10 3 × 3, 20 ReLU ⌈

𝑊 −6
2

⌉ × ⌈

𝐿−6
2

⌉× 20

Pool2 ⌈

𝑊 −6
2

⌉ × ⌈

𝐿−6
2

⌉× 20 2 × 2 None ⌈

⌈

𝑊 −6
2

⌉

2
⌉ × ⌈

⌈

𝐿−6
2

⌉

2
⌉× 20

FC1 ⌈

⌈

𝑊 −6
2

⌉

2
⌉ × ⌈

⌈

𝐿−6
2

⌉

2
⌉× 20 N/A ReLU 512

FC2 512 N/A ReLU 256
FC3 256 N/A None 𝑀

there is a client at its corresponding position and the client has
connected to an AP, the value is set to that AP’s ID.

• Throughput channel: This channel indicates the throughput of
associated clients. For each pixel, if there is a client at its cor-
responding position and the client has connected to an AP, the
value is set to the client’s current throughput.

• Arriving-client channel: This channel indicates the position of
the arriving client which is currently being handled. For the pixel
corresponding to the position of the client, its value is set to 1.

In the above five channels, the values of pixels without any corre-
spondence are all set to 0. In addition, pixels with values other than 0
require normalization due to the different dimensions and value ranges
of each channel’s encoded information.

4.3. Wi-OAC implementation

In this section, we introduce the implementation details of Wi-OAC,
including the DQN configuration, action selection, and optimization
techniques.

4.3.1. DQN configuration
DQN is the core of decision-making in the Wi-OAC scheme, which

is essentially a function mapping: 𝜓(𝑠𝑡) → 𝑞(𝜓(𝑠𝑡), 𝑎;𝜔). CNN is used
as the main structure of DQN as it is an excellent non-linear function
approximator. According to a practical theory for designing deep CNN
effectively [34], the DQN can be divided into two levels, that is,
classifier and feature levels. For the classifier level, we use 3 fully
connected layers to achieve better classification results, and the number
of neurons in the fully connected layer is 512, 256, and 𝑀 , respectively.
For the feature level, we use 2 convolutional layers and 2 pooling
layers. To balance the efficiency of feature extraction and computation
complexity, the first and second convolutional layers use 10 and 20
convolution kernels of size 3 × 3, respectively, and use Rectified Linear
Unit (ReLU) as the activation function. The structure of DQN is shown
in Fig. 4, and the specific settings of DQN are presented in Table 2.

4.3.2. Action selection
We use the 𝜖-greedy strategy for action selection. Specifically, the

parameter 𝜖 is set to guide whether to explore new action or exploit
existing policy. For example, we can set 𝜖 = 0.1 to ensure that the prob-
ability of exploration is 10%, and the probability of exploitation is 90%.
In this case, all possible actions in a specific state have the opportunities
to be selected and executed, which helps the agent learn unknown
knowledge and increases the probability of finding the optimal action.

In this paper, we initialize 𝜖 = 𝜖𝑠 and gradually decrease it to 𝜖𝑓
as the training progresses. The detailed offline training algorithm is
illustrated in Algorithm 1. At the beginning, the scenario parameters
such as 𝜖 and 𝛼 are set to initial values, and the replay memory 
is initialized. Then, the current Q-network and target Q-network are
initialized with random weights. There are 𝑍 training epochs in the
offline training, each of which includes 𝑇 time steps. At each time
7

step, the agent deals with a new client arrival event. Firstly, the agent
Algorithm 1 Offline Training in Wi-OAC
Input: the association vector 𝑋𝑡, throughput vector 𝐻 𝑡, RSSI vector
𝑅𝑡, AU vector 𝐴𝑈 𝑡, AP position matrix 𝑂𝑡𝐴, client position matrix 𝑂𝑡𝐶 ,
nd client arrival events {𝑖1, 𝑖2,… , 𝑖𝑇 }
Output: the trained model
1: initialize scenario parameters and replay memory 
2: initialize current Q-network 𝑞𝑐 and target Q-network 𝑞𝑡
3: for training epoch 𝑘 = 1 to 𝑍 do
4: for time step 𝑡 = 1 to 𝑇 do
5: form state 𝑠𝑡 according to arrival event 𝑖𝑡
6: reformulate the state 𝑠𝑡 to 𝜓(𝑠𝑡)
7: obtain the available action set 𝐴𝑡𝑖
8: if rand < 𝜖 then
9: select an action 𝑎𝑡 ∈ 𝐴𝑡𝑖 randomly

10: else
11: select 𝑎𝑡 = argmax𝑎∈𝐴𝑡𝑖 𝑞𝑐 (𝜓(𝑠𝑡), 𝑎;𝜔)

2: execute action 𝑎𝑡 in the environment
3: obtain 𝑟𝑡 and 𝜓(𝑠𝑡+1) from the environment
4: store experience tuple (𝜓(𝑠𝑡), 𝑎𝑡, 𝑟𝑡, 𝜓(𝑠𝑡+1)) in 
5: if replay_memory_size >= batch_size then
6: take (𝜓(𝑠𝑗 ), 𝑎𝑗 , 𝑟𝑗 , 𝜓(𝑠𝑗+1)) samples from 
7: calculate the loss and train the 𝑞𝑐 (𝜓(𝑠), 𝑎;𝜔)
8: if time step for model updating then
9: update 𝑞𝑡 with the weights of 𝑞𝑐

transforms the input into the system state according to Eq. (7), which is
further reformulated into an image-like tensor. Then, the agent obtains
the available action set 𝐴𝑡𝑖 based on the current state and selects an
action from 𝐴𝑡𝑖. Given the action selection strategy mentioned above,
he action is determined by a generated random number. If the number
s less than 𝜖, the agent selects an action randomly, otherwise it selects
he action with the maximum Q-value. After the arriving client is
ssociated with the selected AP, the reward and new state are obtained,
nd the current state 𝜓(𝑠𝑡), action 𝑎𝑡, reward 𝑟𝑡 and new state 𝜓(𝑠𝑡+1)
re stored in the replay buffer. The agent samples a minibatch from

periodically to calculate the loss and update the weights in the
urrent Q-network. The target Q-network will also be updated with
he parameters of the current Q-network at regular intervals. The
nline association algorithm is depicted in Algorithm 2. First of all,
he offline-trained model is loaded, with the help of which the agent
an make the online AP-client association decision for each arriving
lient. The procedure for association decision-making is similar with
he offline training. Once a client arrives, the agent forms the system
tate based on the input, and transforms it into an image-like tensor.
hen, it calculates the available action set according to the current
tate, and selects the action with the maximum Q-value by following
he policy learned from the offline training phrase. Finally, it performs
he selected action in the environment, and waits for the next client
rrival event.

.3.3. Optimization techniques
In order to further improve the performance of Wi-OAC, two op-

imization strategies are applied for DQN, which are DDQN [35] and
ueling DQN [36].

In nature DQN, the Q-value of the current action is estimated using
he maximum value of the Q-value in the next state. Although maxi-
um estimation can quickly bring the Q-value closer to the possible

ptimization goal, it can also easily lead to overestimation. That is,
ome actions in partial states may be given overestimated rewards. To
olve this problem, DDQN decouples the selection of target Q-value ac-
ion and the calculation of target Q-value, and thus can usually achieve
etter performance and higher convergence speed. Specifically, DDQN
ontains two networks with the same structure and different network
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Algorithm 2 Online Association in Wi-OAC
Input: the association vector 𝑋𝑡, throughput vector 𝐻 𝑡, RSSI vector
𝑅𝑡, AU vector 𝐴𝑈 𝑡, AP position matrix 𝑂𝑡𝐴, client position matrix 𝑂𝑡𝐶 ,
nd client arrival event 𝑖𝑡
Output: the specified AP 𝑎𝑡
1: load the trained model
2: for time step 𝑡 = 1 to ∞ do
3: form state 𝑠𝑡 according to arrival event 𝑖𝑡
4: reformulate the state 𝑠𝑡 to 𝜓(𝑠𝑡)
5: obtain the available action set 𝐴𝑡𝑖
6: select 𝑎𝑡 = argmax𝑎∈𝐴𝑡𝑖 𝑞𝑐 (𝜓(𝑠𝑡), 𝑎;𝜔)
7: execute action 𝑎𝑡 in the environment
8: transform to the next state 𝜓(𝑠𝑡+1)

parameters called current Q-network and target Q-network. The former
is responsible for selecting actions, and the latter is used to calculate
the target Q-values as its network parameters remain unchanged over
a while. Notably, the parameters of the target Q-network are always
copied from the current Q-network for every certain number of steps.

Another optimization strategy concerns about the fact that although
both of the state and action contribute to the Q-value, the degree of
influence on it is different. Hence, we hope that the Q-value can reflect
the differences in the following two aspects. On the one hand, in some
state, the Q-values for choosing different APs should fully reflect the
differences. On the other hand, in different states, the rewards for
choosing the same AP may differ significantly, so the Q-values for
different states should also be well distinguished. Therefore, dueling
DQN is used to tackle this issue, which considers dividing the Q-
network into two parts, i.e., the value function and the advantage
function. Specifically, the value function is only related to the cur-
rent state and has nothing to do with the adopted action, while the
advantage function is related to both the state and action. In this
work, two sub-network structures are added before the output layer,
corresponding to the value function network and advantage function
network respectively. Notably, the final output of the Q-network is a
linear combination of the value function’s output and the advantage
function’s output.

5. Simulations

In this section, we validate the effectiveness of our Wi-OAC solution
under different scenario scales through simulation experiments.

5.1. Setup

Firstly, the settings of simulation experiments are presented. We
consider network scenario as a two-dimensional rectangular area,
which is determined by its length 𝐿 and width 𝑊 . The positions
f APs and clients are randomly generated according to the normal
istribution and are different from each other. According to Cisco’s
eport [37], an environment with a large number of concentrated
lients (≥1 client every 1.5 m 2) can be defined as high client-density
nvironment. In addition, a typical ratio of the number of clients to
he number of AP is 15 ∶ 1. Therefore, we refer to these criteria to
et up network scenarios with different scales that are presented in
able 3. In the following, we use the number of clients to represent
he corresponding scenario scale, i.e., 45, 75, 105, 135, 165, 195, 225,
nd 255, respectively.

In the simulation experiments, we adopt the average client through-
ut as average user QoE metric regardless of specific user application.
e set the parameters of path loss model according to the model B of

he standard WiFi channel models [38], which represents a typical large
pen space and office environment. Besides, Gaussian white noise 
8

is applied to the environment, and  is set be −82 dBm. We assign 1
Table 3
Parameter settings of network scales.

Number of clients Number of APs Length 𝐿 & width 𝑊 (m)

45 3 9, 9
75 5 11, 11
105 7 13, 13
135 9 15, 15
165 11 16, 16
195 13 18, 18
225 15 19, 19
255 17 20, 20

Table 4
Simulation parameters.

Parameters Values

Path loss model parameters

Path loss of reference distance 𝐿0(𝑑𝐵) 106.73
Breakpoint distance 𝑑𝐵𝑃 (m) 5
Slope before breakpoint 𝜎1 2
Slope after breakpoint 𝜎2 3.5

Scenario parameters

Channel bandwidth (MHz) 40
AP transmit power 𝑃 (mW) 100
CCA 𝜃 (dBm) −80
Gaussian white noise  (dBm) −82

Algorithm parameters

Discount factor 𝛾 0.9
Replay memory capacity 1 × 106

Minibatch size 32
Target network update period 200
Activation function ReLU
Initial exploration probability 𝜖𝑠 1.0
Final exploration probability 𝜖𝑓 0.001

40MHz orthogonal channels to each AP that supports 802.11ac. We
set that clients are under the saturated traffic conditions and share
spectrum resources in a temporary fairness way. Hence, the client
throughput can be obtained through a mapping table of SNR to mod-
ulation and coding scheme (MCS) values [39]. The specific simulation
parameters are summarized in Table 4.

In addition to the average client throughput, we also evaluate the
performance on AP load balancing. To this end, we adopt a balance
index based on Jain’s Fairness Index [40], which is defined as follows:

𝑓 =
(
∑𝑀
𝑗=1 𝑗 )

2

|𝑀|

∑𝑀
𝑗=1(𝑗 )2

(12)

here 𝑗 represents the load of AP 𝑗. The AP load is usually measured
y AU, which refers to the percentage of time when the wireless
hannel is busy. Since it is difficult to obtain the real-time AU in the
imulation environment, the AP load is characterized by the aggregate
hroughput of AP.

For each set of simulation experiments, the DRL model for online
ssociation is trained offline under the corresponding network scenario,
nd then loaded into the controller for the performance evaluation.
esides, we compare our Wi-OAC solution with two other association
ontrol mechanisms, that is, strongest-RSSI-first (SRF), and RL method
ased on LCF [27].

.2. Simulation results

According to the above settings, we generate 8 scenarios with dif-
erent scales, where the number of arriving clients is 45, 75, 105, 135,
65, 195, 225, and 255, respectively. Experiments on each scenario are
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Fig. 5. Performance on average client throughput varying scenario scales.

Fig. 6. Performance on AP load balancing varying scenario scales.

carried out three times to eliminate the contingency. The average client
throughput and balance index are measured after all clients connect to
the WLAN.

Fig. 5 illustrates the average client throughput obtained by the three
association control mechanisms when scenario scales are varying. It
can be observed that our Wi-OAC scheme achieves significantly higher
average client throughput compared to the LCF and SRF schemes on
all scenario scales. Moreover, we can also see from the figure that
the average client throughput has a slightly decreasing trend with the
expansion of network scenarios. It can be explained that more APs
are deployed in large-scale scenarios to serve more clients and ensure
that user experience will not be reduced significantly. However, the
slightly decrease of average client throughput is inevitable, because
some clients may connected to an AP that is further away from itself
when the scenario expends.

Fig. 6 shows the performance on AP load balancing. It can be seen
from the figure that our Wi-OAC scheme achieves the best performance
on AP load balancing regardless of scenario scales. That is because
the association decision making of Wi-OAC is on the basis of the
global network information, and can effectively prevent clients from
associating with overloaded APs.

6. Testbed and real-world experiments

In this section, we implement a prototype of Wi-OAC, deploy a real-
istic high client-density testbed and conduct real-world experiments for
further performance validation in terms of average client throughput,
AP load balancing and user QoE.
9

Fig. 7. Architecture of Wi-OAC prototype. The prototype consists of a central
controller, multiple APs and several client clusters.

6.1. Wi-OAC prototype and testbed

To verify the effectiveness of our Wi-OAC solution in real-world sce-
narios, we implement a prototype which consists of a central controller,
multiple APs and several client clusters. The architecture is shown in
Fig. 7, and the implementation details are explained as follows:

6.1.1. Controller-side implementation
The central controller aggregates the global network status informa-

tion and makes DRL-aided AP-client association decisions. Specifically,
the data aggregation module deals with the status information about
APs and clients, which is received by the communication module. The
data is stored, and can be utilized as the input of offline training in the
association control module. Meanwhile, with the help of the offline-
trained model, the association control module makes online association
decision for each arriving client according to the current system state
tensor. Moreover, a Web-based management system is built on the
controller for network manager to configure and manage the WLAN.

6.1.2. AP-side implementation
We adopt the embedded board Compex WPQ864,1 with Qualcomm

QCA9984 chipset as AP devices. The APs are flashed with Linux-based
open-source OpenWrt.2 In the Wi-OAC, the APs not only provide WiFi
connections for clients, but also acts as the data collector and command
executor for the central controller. Specifically, the association agent
model collects the status information about itself and its connected
clients, and sends it to the controller through the communication
module. In addition, the association agent module forwards probe
request frames sent by clients and receives the commands of AP-client
association decisions from the controller. Then, the commands are
conducted by Hostapd3 an open-source userspace program integrated
in OpenWrt for AP management.

1 https://compex.com.sg/shop/embedded-board/multi-slots/wpq864/ (last
accessed: January 29, 2022).

2 https://openwrt.org/ (last accessed: January 29, 2022).
3 https://w1.fi/hostapd/ (last accessed: January 29, 2022).

https://compex.com.sg/shop/embedded-board/multi-slots/wpq864/
https://openwrt.org/
https://w1.fi/hostapd/
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6.1.3. Client-side implementation
We build a PC equipped with multiple wireless NICs (WNICs), called

a client cluster, which can be utilized to emulate multiple clients.
Several client clusters can be deployed in the same area, which forms
a high client-density environment. In the experiments, the Wi-OAC
assigns each WNIC installed on the client clusters to associate with
a specified AP. Once connecting to the WLAN, the corresponding
independent threads are created to bind with the WNICs, respectively,
and perform different kinds of user applications. Meanwhile, the QoE
score can be measured for each thread (client).

6.2. QoE metrics

To evaluate the performance of our Wi-OAC solution in real-world
scenarios, we consider three types of typical user applications, i.e., file
downloading, video playing, and web browsing. In the experiments,
the QoE metric is used to represent the users’ actual experience and
obtained by normalizing the mean opinion scores (MOS). Specifically,
we specify a MOS evaluation model for each of the above applications.

6.2.1. File downloading
We use the Iperf34 tool to generate TCP downlink traffic, which can

simulate the file downloading process, and use the MOS-throughput
logarithmic relationship [30] to calculate the MOS. The relationship
stems from the assumption that the utility function of elastic traffic
(e.g., FTP services) is increasing, strictly concave, and continuously
differentiable with respect to throughput. The MOS function for the file
downloading application is defined as follows.

𝜇𝑓 (𝜂) = 𝑎 × lg (𝑏𝜂) (13)

where 𝜇𝑓 (𝜂) is the MOS function for file downloading, parameters 𝑎 and
are determined by the worst and best quality perceived by the user,

nd 𝜂 represents the client throughput.
In this paper, we set the upper limit of client throughput to be

0Mbps, and the corresponding MOS reach the maximum value of 5.
hile the lower limit of client throughput is set to be 5Mbps, and the

alue of the corresponding MOS is 1. According to the these settings,
e can obtain the values of parameters 𝑎 and 𝑏.

.2.2. Video playing
We use dashc [31] as the video player, which is a software tool for

ynamic adaptive streaming over HTTP (DASH) video. It also includes
lightweight testing function to evaluate the performance of real DASH
ideo stream traffic. During video playback, the MOS following the ITU-
Rec. P.1203 standard can be obtained by the tool dashc, which is

alculated according to the video buffering and playback related logs.

.2.3. Web browsing
We select 37 sites from the top 50 portal sites in China and di-

ide them into two categories according to web pages’ actual loading
peed, namely short-duration sites and long-duration sites. Then, we
se headless Chrome browser with Node.js5 and Puppeteer6 to perform
utomated web browsing. Although several influencing factors have
een proposed to account for the QoE of web browsing, the user waiting
ime, i.e., page load time (PLT), is still the main factor. Therefore, we
se the PLT as the primary application service quality indicator. The
TU-T G 1030 single-page web-QoE model [32] defines a logarithmic
elationship between PLT and MOS. According to this relationship, the
OS function of web browsing can be defined as follows.

𝑤(𝜆) =

{

4.38 − 1.30 × ln 𝜆 for short-duration sites
4.79 − 1.03 × ln 𝜆 for long-duration sites

(14)

4 https://iperf.fr/ (last accessed: January 29, 2022).
5 https://nodejs.org/en/ (last accessed: January 29, 2022).
6 https://github.com/puppeteer/puppeteer (last accessed: January 29,
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where 𝜇𝑤(𝜆) denotes the MOS function for web browsing and 𝜆 repre-
ents the PLT.

.3. Deployment

On the basis of the prototype, we build a Wi-OAC testbed. Fig. 8
epicts the deployment of Wi-OAC testbed. As shown in this figure, the
etwork scenario is in a rectangular room, where a controller, 3 APs
nd 3 client clusters are deployed in less than 10.5 m2 area. The details
f these devices are presented as follows:

• Controller: PC server HP EliteDesk 880 G3TWR, Ubuntu 16.04
LTS 64 bit.

• AP: Embedded board Compex WPQ864, wireless module QCA99-
84, 4 antennas, Openwrt 19.07.3.

• Client cluster: PC with 18 WNICs (Intel 9260/8265/3168), 18
antennas, Ubuntu 18.04 LTS 64 bit.

According to the area of the real-world scenario, the side length of
ach pixel in the image-like tensor is set to 5 cm. In the experiments, all
Ps support 802.11ac, and each AP is assigned an 80MHz orthogonal
hannel. To ensure the normal operation of the association control
echanism described in Section 3.1, we set the same SSID and modified

eacon frames with an empty SSID field for all APs, and block APs’
irect replies to the probe request frames.

We conduct four groups of experiments, the first three groups are
or three kinds of user applications, respectively, i.e., file downloading,
ideo playing, and web browsing, and in the last group, a mixture of
he three types of applications are considered.

For each group of experiments, the DRL model is firstly trained
ffline through the data collected from the corresponding realistic
cenario. After that, 20 rounds are performed for each group of exper-
ments by following the same procedure used in the model training,
nd the mean value is taken as the final result. The detailed procedure
s as follows. In each round, the controller makes 54 clients access
o the WLAN one by one in a random order. Before each client 𝑖

is associated, the controller inputs the current system state into the
model and outputs the corresponding AP-client association decisions.
After client 𝑖 is associated with the specified AP, it immediately runs
the application program, and the running period of the application
program is set to be 10 s. After the application program is completed,
the client obtains the QoE metric and feeds it back to the controller.
Simultaneously, the controller reassigns the application for associated
clients to run and selects the next client 𝑖 + 1 to continue associating.
The above process is repeated until all 54 clients are connected to the
WLAN, and this round of experiments ends. The controller collects the
relevant data generated from this round of experiments as the basis for
judging the performance of the schemes.

6.4. Real-world experimental results

In the following, the results of four groups of experiments are
presented.

6.4.1. File downloading
The traffic of such applications is characterized by user demands for

high-throughput and continuous data transmission. In general, as the
number of clients connecting to WLAN continues to increase, the over-
all network throughput increases at a relatively rapid rate. However,
when one or several APs reach the load limit, associating clients to such
APs will not improve the overall network throughput, and such APs are
unable to meet the traffic demand of newly connected clients for file
downloading. With uneven load distribution, APs with a high number
of associated clients will quickly approach the load limit. Besides, the
actual available bandwidth of other clients gradually decreases due to

the channel contention among clients, which in turn affects user QoE.

https://iperf.fr/
https://nodejs.org/en/
https://github.com/puppeteer/puppeteer
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Fig. 8. Deployment of Wi-OAC testbed. The Wi-OAC testbed includes a central controller, 3 APs and 3 client clusters (54 clients) and is deployed in less than 10.5 m2 area.
Fig. 9. Performance on average client throughput, AP load balancing and user QoE for file downloading applications in real-world experiments.
Fig. 9(b) shows that the load balancing of the SRF method has a
large gap with the other two methods starting from the arrival of the
12th client, so there is bound to be a severe load imbalance in the
network. With the association of subsequent clients, the load imbalance
leads to a significant decline in the average throughput. Therefore, as
shown in Fig. 9(c), after all clients are connected, the average user
QoE of the SRF method is only about 0.2, and its performance is
unacceptable.

Combined with Fig. 9(a) and (b), it is obvious that the two types
of RL-based association control schemes, i.e., LCF and Wi-OAC, signif-
icantly outperform the default SRF method in both average through-
put and load balancing, which demonstrates that RL methods that
value long-term reward expectations have higher effectiveness and
applicability for AP-client association decision-making in high-density
WLANs.

Through further comparative analysis, we find that as the number
of clients that have connected to the networks increases, the perfor-
mance of Wi-OAC is always better than that of LCF, and the gap is
becoming larger and larger. This trend reveals that the RL approach
based on a linear combination of features has its limitations. As shown
in Fig. 9(c), the average user QoE of Wi-OAC is still above 0.8, even
when all 54 clients have joined the WLAN. Hence, it is demonstrated
that the Wi-OAC can provide good user experience for file-downloading
applications.
11
6.4.2. Video playing
We use a DASH video source from MMSys18 datasets,7 and its

average throughput requirements are lower than those of the file
downloading application. For such video playing applications, our Wi-
OAC solution also performs better than other two schemes in terms of
average client throughput, AP load balancing, and user QoE, as shown
in Fig. 10.

The traffic characteristic of DASH video is that clients no longer
generate traffic temporarily after the video buffering is completed,
and the user QoE of the application is relatively insensitive to the
decrease of the actual throughput. Since DASH always requests the
highest quality video clips that the network can support and tries to
avoid the events such as buffer exhaustion and frame loss that may
seriously impair user experience. Hence, it significantly reduces the
impact of network deterioration on user QoE, as shown in Fig. 10(c).

As shown in Fig. 10(a) and (b), the performance on the average
client throughput and AP load balancing are similar to the trend of
file downloading applications. However, the value of average client
throughput is significantly smaller, which is consistent with its through-
put requirements. In addition, the balancing index is lower in this
group of experiments, mainly due to its different traffic generation
pattern from that of the file downloading applications. Clients may

7 http://ftp.itec.aau.at/datasets/mmsys18/ (last accessed: January 29,
2022).

http://ftp.itec.aau.at/datasets/mmsys18/
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Fig. 10. Performance on average client throughput, AP load balancing and user QoE for video playing applications in real-world experiments.
Fig. 11. Performance comparison on average client throughput, AP load balancing and user QoE for web browsing applications in real-world experiments.
Fig. 12. Performance on average client throughput, AP load balancing and user QoE for mixed applications in real-world experiments.
have zero traffic demand at some time, which makes its overall load
balancing slightly lower than that of applications where traffic demands
are always present.

6.4.3. Web browsing
The traffic characteristic of web browsing applications is that the

average throughput requirements are the lowest among the three types
of applications involved in this paper, and the traffic requirements
are time-variant during the web page loading process depending on
the specific web page. For such web browsing applications, our Wi-
OAC solution still performs best among these three client association
schemes on average client throughput, AP load balancing, and user
QoE, as shown in Fig. 11.

It can be seen from Fig. 11(a) that the average client throughput of
web browsing applications align with the above traffic characteristic.
In addition, the traffic of web browsing applications is considered
during the time from when the browser is assigned a URL to when
the multimedia content is fully loaded. In fact, clients’ traffic demands
in each step vary greatly, and the number and proportion of static
resources and dynamic resources in different web pages are also quite
different. Due to these differences, different browser processes may
execute different stages of page loading at the same time. Even if they
execute the same stage, their throughput may still be different. This
leads to the large difference on real-time throughput of clients, which
ultimately makes the AP load balancing at a low level, as presented in
Fig. 11(b).
12
6.4.4. Mixed applications
In the group of experiments, every arriving client selects one of

the above three types of applications, and we assure that the number
of clients for each kind of applications is roughly the same at every
moment. Therefore, the traffic characteristics of mixed applications are
the average and synthesis of the above three types of applications’ traf-
fic characteristics when they are executed separately. For example, the
trend and value of average client throughput in Fig. 12(a) are similar
to the average of results in the above three groups of experiments.

By running the mixed applications, we obtain the results consistent
with those of the three groups of experiments described above. Besides,
the scenario of densely deployed clients running a mix of three typical
applications with high, medium, and low throughput requirements is a
better representation of the real user experience in a high client-density
environment. As is shown in Fig. 12, compared with the LCF and SRF
methods, the curve representing Wi-OAC has a slower decay rate and
higher values on different aspects, i.e., average client throughput, AP
load balancing, and user QoE, while clients are continuously arriving,
which indicates that Wi-OAC can effectively improve user QoE in a high
client-density environment.

7. Conclusion

In this paper, we investigated the online centralized association
control problem in high-client density WLANs with the objective of
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improving average user QoE metric. To solve this issue, a deep rein-
forcement learning aided solution, called Wi-OAC, was proposed, where
the client association control problem was regarded as a sequential
decision problem driven by client arrival events. Firstly, we presented
the framework of Wi-OAC based on MDP, including the offline training
and online association. With the help of the offline-trained model, Wi-
OAC could assign an appropriate AP to serve each arriving client in the
online association phase. Given the complexity of state space, the state
reformulation scheme was designed to transform the initial representa-
tion of system state into an image-like pattern. Besides, the DDQN and
dueling DQN strategies were combined to accelerate the convergence.
After that, both simulation experiments and real-world experiments
were conducted to evaluate the performance of Wi-OAC. In the real-
world experiments, a Wi-OAC testbed was built with 3 APs and 54
clients in less than 10.5 m2 area. The experimental results demonstrated
that Wi-OAC could significantly improve the performance in terms of
average client throughput, AP load balancing and user QoE.

In the future, we will study dynamic client migration mechanism so
as to adapt to time-variant network environment, and further optimize
network performance and user QoE.
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