

Optimal Wireless Power Transfer Scheduling for Delay Minimization

Feng Shan^{*}, Junzhou Luo^{*}, Weiwei Wu^{*}, Xiaojun Shen⁺ * Southeast University, China + University of Missouri-Kansas City, USA

Background

Problem Modeling

Solutions

Background

Problem Modeling

Solutions

Wireless Power Transfer (WPT)

- Current batteries:
 - Large in size
 - Heavy in weight
 - Low in capacity
 - Slow to charge
- Alternative option: wireless power transfer (industry)

There are already companies offer commercial products.

Wireless Power Transfer (WPT)

- Current batteries:
 - Large in size
 - Heavy in weight
 - Low in capacity
 - Slow to charge
- Alternative option: wireless power transfer (academia)

IV tower powered battery-less devices [SIGCOMM'13] Best paper

Wi-Fi powered cameras [CoNext'15] Best paper Nominee

4/13/2016

Research Work

- Because of the current hardware limitation, research works usually adopt the Harvest-Then-Transmit strategy
- The objectives:

- Throughput
- H. Ju, et al [TWC, 14]: Time allocation
- Y. Gu, et al [ICC'15]: Relay
- Y. L. Che, et al [JSAC, 15]: Large-scale
- S. Bi, et al [TWC, 16]: Placement

Transmission Delay

data flow

Energy-Delay Tradeoff

Shannon-Hartley Theorem: $rate = \log(1 + power)$

To deliver a block of data:

- Lower rate → less energy, longer delay
- Higher rate → more energy, shorter delay
- Trade-off between energy and delay

Background

Problem Modeling

Problem Modeling

- Input
 - Packets {P₁, P₂, ..., P_n} in the queue.
 - P_i has a size B_i an arrival time a_i , e.g. $P_i(B_i, a_i)$.
- Two types of phases
 - Wireless charging in charging phases receiving power p
 - Data transmission in sending phases rate r adjustable
- Objective
 - To minimize the packets transmission completion delay

Problem Modeling (cont.)

- Define a cycle
 - Consecutive charging phase and sending phase.
- Two sub-objectives
 - Determine durations of all cycles
 - Determine rates in sending phases

Main Results

For the offline problem:

- Intuitively, the duration and rates depends on
 - 1 initial energy of the battery
 - 2 sizes of packets
- Surprisingly, our main Lemma is

The optimal offline transmission rate for each cycle, except the last, is constant and dependents on neither ① nor ②.

• Such rate is called the *wOPT* rate

The wOPT rate

- A simplified problem
 - 1. One packet
 - 2. Large battery capacity

• Trade-off between two strategies

The *wOPT* rate (cont.)

Theorem

The optimal offline solution transmits at wOPT rate r_s, which is independent of the initial energy E_0 and packet size B.

- Proof
 - 1. Energy in battery equals energy consumed

$$E_0 + p au_1 = au_2 (2^r - 1)$$

- 2. All data must be delivered $\tau_2 = \frac{B}{r}$ 3. Combine the two 4. Let $T(r) = \tau_1 + \tau_2 = \frac{B(2^r 1 + p)}{rp} \frac{E_0}{p}$
- 5. To minimize T(r), we have

$$T(r)' = (\frac{2^r - 1 + p}{r})' = 0$$

6. Therefore $r_s = \frac{w+1}{\ln 2}$ where $w = \mathcal{W}(\frac{p-1}{e})$ and $\mathcal{W}(z)e^{\mathcal{W}(z)} = z$.

Importance of wOPT rate

- Although derived from a simple scenario, it plays an important role in the general scenario.
- Conclude

The discovery of the *wOPT* rate reveals an essential property of Wireless Power Transfers.

General problem

- The general problem
 - 1. Multiple packets
 - 2. Battery capacity limited
- Lemma

The optimal offline solution transmits at the *wOPT* rate in every cycle, except the last cycle.

- In the last cycle, transmission rate
 - 1. Increase only
 - 2. Increase only at packet arrivals
 - 3. Increase when arrived data all transmitted

Solution keys

- Although know the transmission rate in most cycles
- Still need to
 - 1. Determine the beginning and ending of each cycles
 - 2. Determine the rates in the last cycle

Cumulative Data-time diagram

- The *Cumulative data-time* diagram
 - -A(t): total amount of bits arrived before t
 - B(t): actual amount of data transmitted before t
 - slope of B(t) is actually the transmission rates

• Lemma

Any departure curve must be on the right of the arrival curve.

Algorithm Outline

- 1. Transmit at *wOPT* rate whenever possible
- 2. In the last cycle, set increasing rates

Algorithm Details

In Step 2: Detailed method to determine the rates in the last cycle.

Problem Modeling

Solutions

Online algorithm

- The online algorithm is quite simple

 Transmit at wOPT rate whenever possible
- In the simulation, we compare it with the offline optimal algorithm

Simulation Settings

• Parameter Settings

Parameter	Packet arrival	Packet size	Battery capacity	Initial energy
Distribution	Poisson	Uniform	-	-
Value	1/10	[7, 10]	[800,1500]	[0, full]

• Data Generation

- Mean of 100 instances
- Each instance generates random 50 packets

Objective

- The completion time for all packets transmission

Simulation Results

- The higher energy transfer speed p, the shorter the completion time
 - When p is large, less time to charge the battery, therefore the total time decreases
 - While *p* is small, more careful effect to schedule the transmission. Thus the simple online heuristic fails to produce a solution close to the optimal.

Evaluation Results

- Battery capacity does not have much impact on the algorithm performance
- Overall, the online heuristic has a similar performance to the offline optimal
 - Because it is designed based on the optimality property and transmits at the *wOPT* rate.

Background

Problem Modeling

Solutions

Conclusion

- 1. Study the delay minimization problem in Wireless Power Transfer
- 2. Discovery the *wOPT* rate
- 3. Based on it, design optimal offline algorithm and online heuristic algorithm.
- 4. The discovery of the *wOPT* rate reveals an essential property of Wireless Power Transfer

Thank You!

Feng Shan (shanfeng@seu.edu.cn)

Southeast University, China

