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Abstract— Energy harvesting is a promising technique to
address the energy hunger problem for thousands of wireless
devices. In Radio Frequency (RF) energy harvesting systems,
a wireless device first harvests energy and then transmits data
with this energy, hence the ‘harvest-then-transmit’ (HTT) prin-
ciple is widely adopted. We must carefully design the HTT
schedule, i.e., schedule the timing between harvesting and trans-
mission, and decide the data transmission power such that the
throughput can be maximized with the limited harvested energy.
Distinct from existing work, we assume energy harvested from
RF sources is time-varying, which is more practical but more
difficult to handle. We first discover a surprising result that the
optimal transmission power is independent of the transmission
time, but solely depends on the RF harvesting power, for a simple
case when the energy harvesting is stable. We then obtain an
optimal offline HTT-scheduling for the general case that allows
the RF harvesting power to vary with time. To the best of our
knowledge, it is the first optimal HTT-scheduling algorithm that
achieves maximum data throughput for time-varying RF powered
systems. Finally, an efficient online heuristic algorithm is designed
based on the offline optimality properties. Simulations show that
the proposed online algorithm has superior performance, which
achieves more than 90% of the offline maximum throughput in
most cases.

Index Terms— Wireless communication networks, algorithm
design, wireless power transfer, harvest-then-transmit, radio
frequency energy harvesting, time-varying wireless power.

I. INTRODUCTION

T
HE energy hunger problem is one of the major issues for

thousands of wireless devices nowadays, such as wireless

sensors, Internet of Things devices, and autonomous vehicles,
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Fig. 1. An illustration of a system that obtains energy from surrounding RF
signals and sends its data using the harvested energy.

affecting their working lifetime and thus user experiences.

Energy harvesting is a promising technique being developed

to address this problem. New research efforts are continu-

ously being made in this direction to harvest energy from

various sources. Some recent research work includes magnetic

wireless power transfer [1], [2], harvesting energy from the

radio frequency [3], [4], solar energy harvesting for electric

autonomous vehicles [5], and underwater ultrasonic wireless

power transfer [6].

For the vast majority of wireless devices deployed around

the human habitat, energy from radio frequency (RF) is one

of the important sources. Since the wireless signal not only

carries information but also carries power. Hardware for RF

power harvesting has been built to harvest energy from every-

day radio frequency signals such as TV broadcast signals [7],

WiFi signals [8] and Bluetooth signals [9]. Meanwhile, radio

wave interference has been utilized to charge multiple devices

concurrently [4]. For a long time, off-the-shelf commercial

products on RF wireless power transfer (WPT) have been

available from both Powercast [10] and WISP [11]. Fig. 1

illustrates such a system that uses harvested energy to power

its operations and transmit data.

A wireless device in an RF powered system usually first

harvests energy from RF signals and then transmits data

with the harvested energy. There are three primary reasons

that the two operations execute sequentially. Firstly, in low-

cost sensors, crucial hardware components like antennas are

shared by both the harvesting and transmission modules,

preventing simultaneous operations [13], [14]. Secondly, most

energy harvesting devices, including commercial products

from Powercast [10] and WISP [11], use supercapacitors as

energy buffers, which inherently cannot support concurrent

discharging (transmitting data) and recharging (harvesting

energy) [12]. Lastly, the limited bandwidth needs to be
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shared by the two operations. For example, Mohanti et al. [8]

propose a time-switching strategy that shares the ISM band

for WiFi data transmission and RF WPT; more recently,

Clerckx et al. [28] built a practical energy harvesting system

that divides operation time into distinct slots for either receiv-

ing power or transmitting data.

In this paper, we use ‘harvest-then-transmit’ (HTT) to

represent the principle of first harvesting energy then trans-

mission data. HTT schedule has already been widely adopted

widely [8], [12], [13], [15], [16], [17], [19], [21], [22].

A. Related Work

Time-varying is one of the most significant features for

general energy harvested from the surrounding environment,

including energy harvested from RF signal power sources [13],

[15], and from other power sources [18]. Despite tremen-

dous research efforts being spent in this direction, how the

time-varying RF power affects the wireless data throughput,

even for a simple scenario including only one transmitter and

one receiver, is not yet fully investigated.

This paper therefore studies such a fundamental HTT-

scheduling problem aiming at transmitting the maximum data

in a given time duration, assuming the wireless harvesting

power is time-varying. More specially, we wish to optimally

determine for the transmitter when to do energy harvesting

(charging), when to do data transmission (sending), and what

transmission power to use, in order to maximize data trans-

mission with the limited and dynamic harvested power.

Some of the most relevant research work includes [12],

[15], [19], [20]. Ju and Zhang [19] are among the first

group of researchers to investigate this problem, although they

assume constant harvesting power. For one transmitter one

receiver scenario, they have observed an important tradeoff

that setting a longer charging time leads to a shorter sending

time but at a higher transmission rate since more energy

was charged, while setting a shorter charging duration results

in a lower transmission rate but a longer sending duration.

They have proposed a way of finding the best time allocation

to achieve maximum data throughput. Zhao et al. [20] have

also studied the same throughput maximization problem and

proposed a numerically searching technique to solve it. Zewde

and Gursoy [15] extends such results on throughput max-

imization by further considering statistical QoS constraints.

Li et al. [12] study the network utility (or throughput) maxi-

mization problem for cooperative networks. Although Zewde

and Gursoy [15] and Li et al. [12] target advanced topics,

they both provide analysis for the simple scenario with only

one transmitter and one receiver and constant RF harvesting

power. Assuming constant RF harvesting power simplifies the

theoretical analysis of HTT and its schedule. However, how the

time-varying RF power affects the data throughput remains a

theoretically unsolved challenging problem, even for a simple

scenario that includes only one transmitter and one receiver.

Distinct from the above most relevant work [12], [15], [19],

[20] that aim at the optimal time allocation between charging

and sending, we approach the optimal solution from a quite

different angle i.e., by targeting the optimal data transmission

power. This new approach has led us to discover a surprising

result. Our previous work [16], [17] assumes the stable power

transfer and studies a different optimization problem, i.e.,

design an HTT schedule to achieve the minimum delay for

transmitting a given set of data packets. These previous works

of ours have inspired the discovery of the basic results of this

paper.

Extensive research efforts have been devoted to various

topics in RF powered systems. One of the most notable

system-building works comes from Clerckx and his coau-

thors [28], [29]. The system they developed harvests RF

energy from the electromagnetic waves of distributed antennas.

More specifically, their system has two antennas: one is

dedicated to harvesting energy, and the other is for transmitting

data. Meanwhile, time is divided into slots, each slot being

assigned either for energy harvesting or data transmission.

Alcaraz Lopez et al. [30] surveyed the research area of RF

harvesting, categorizing the harvesting methods based on the

number of antennas used and how these antennas are organized

to harvest RF energy. Both Alcaraz Lopez et al. [31] and

Valentini et al. [32] allow energy to accumulate over time

beyond a single ‘harvest-and-transmit’ round, while the former

focuses on a finite battery and finite block length, and the

latter studies the problem when the batteries are affected by

aging. Huang et al. [33] studied a more general problem of

one-to-many RF power transfer, investigating how to deter-

mine the harvest-transmit time ratio and transmission power.

Choi et al. [34] allow random access to the wireless broadcast

medium. They focus on the harvest-or-access problem for each

time slot. Karadag et al. [35] explore how to control power

and allocate harvest-transmit time, by proving the NP-hardness

and then proposing heuristic algorithms.

The time-varying power harvested from harvesting is one

of the most important characteristics and is assumed by some

recent research work [18]. Qureshi and Tekin [18] design

transmission rate selection online algorithm for cognitive

radio networks assuming the dynamic power from an energy

harvesting source. Kim et al. [23] provides a power allocation

policy based on reinforcement learning, assuming random

energy arrival and time-varying channels. Zhang et al. [24]

design a general framework to solve the public goods problem

for the WPT network, considering the time-varying channel

condition.

While general energy harvesting from the surrounding envi-

ronment has been discussed, RF Wireless Power Transfer

(WPT) proves to be a more reliable solution for the vast

majority of wireless devices deployed in human habitats.

B. Motivation and Contributions

From the above discussion, we are motivated by the need

to design an efficient HTT-scheduling to achieve maximum

data throughput for time-varying RF powered systems. The

motivations for our work are listed below.

• There is a lack of optimal results for this fundamental

problem, despite the tremendous research efforts that
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have been expended in this direction. Most related work

assumes that the wireless power transfer is stable and

static. Whether there exists an optimal solution for

the fundamental throughput maximization problem for

time-varying RF powered systems in a simple scenario

with only one transmitter and one receiver is still open.

• We are encouraged by our previous work. Although our

previous work [16], [17] studies a different problem and

assumes constant energy harvesting from RF power, we

do get inspired by handling the tradeoff of charging and

sending. We attack the new optimization problem with a

quite different approach, which has led us to discover a

surprising result that no existing work has achieved.

In this paper, we attempt to solve the theoretically challeng-

ing optimization problem.

• We establish a set of optimality properties for cases

with stable energy harvesting, which characterize the

necessary conditions for any optimal schedule.

• Our study reveals the surprising discovery that the opti-

mal transmission power is independent of the transmis-

sion time but depends solely on the RF harvesting power.

This discovery offers valuable insights for addressing

related problems in the field.

• Additionally, we introduce an optimal offline

HTT-scheduling for the general case that allows RF

power to vary with time. To the best of our knowledge,

it is the first optimal HTT-scheduling algorithm that

achieves maximum data throughput for time-varying RF

powered systems.

• We also present the design of an online heuristic

algorithm aimed at maximizing throughput in RF power

harvesting systems. Its superior performance compared

with the optimal offline algorithm is demonstrated by

simulations.

The remainder of this paper is organized as follows.

In Section II, we formally define the system model and

the optimization problem. A set of optimality properties for

the HTT-scheduling is obtained and presented in Section III.

An optimal scheduling algorithm for the defined problem is

presented in Section IV and Section V. The online schedul-

ing problem is investigated in Section VI, where an online

algorithm is presented. Simulation results are also discussed

in the same Section. Section VII concludes this paper. A few

proofs of the algorithm have been omitted here because

of space limitations, but they are available in an extended

version [36].

II. PROBLEM FORMULATION

A. System Model

We consider a simple communication channel consisting

of a data receiver and a wireless-powered data transmitter.

The transmitter transmits data to the receiver over an AWGN

wireless communication channel, which is widely adopted

in the literatures [13], [15], and [16]. An outside power

source, such as TV/WiFi broadcasting signal, cellular signal,

or power beacon, is assumed to provide wireless power to the

transmitter. Generally, the energy harvested from the outside

power source is varying in time. The RF harvesting power is

Fig. 2. A wireless transmitter harvests energy in the charging phases
and transmits data in the sending phases. The charging power p(t) is a
time-varying function. The phase switching time ti and the sending power
ρ(t) are to be determined to maximize throughput. Obviously, the remaining
energy increases in the charging phases and decreases in the sending phases.

therefore a time-varying function, denoted as p(t), 0 ≤ t ≤ T ,

where T is the length of the duration in consideration.

The transmitter has to first harvest energy before it can

transmit data, so the ‘harvest-then-transmit’ principle is used.

We therefore define a two-phase cycle that consists of a

charging phase and a sending phase. In the charging phase,

the transmitter harvests the wireless power, and in the sending

phase, it sends data to the receiver. The transmitter repeatedly

and continuously switches between the two phases in the time

interval [0, T ]. Suppose that there are m cycles in this interval.

Thus, there are 2m phases and 2m switches, which occur at

time instances {t1, t2, . . . , t2m}, 0 < t1 < . . . < t2m. The 2m
phases are labeled from 1 to 2m, with phase i starting from

time ti−1 and ends at ti(i = 1, 2, . . . , 2m). The lengths of

these phases are to be determined by our algorithm. However,

it is assumed that there is a lower bound ∆t for the length of

any charging phase, which is imposed by the hardware.

Note that we assume t0 = 0 and the battery has an initial

energy Einit. Obviously, phase 2i−1 is a charging phase, and

phase 2i is a sending phase, i = 1, 2, . . . ,m.

In sending phases, the transmission power is denoted as

ρ(t), which is subject to the power constraint of Eq. (1), where

ρmax is the maximum transmission power imposed by the

hardware.

0 ≤ ρ(t) ≤ ρmax,0 ≤ t ≤ T. (1)

At time t, the transmitter could choose one of the actions

below:
1) Consume the energy of the battery at a given power ρ(t)

and transmit data.

2) Charge the battery with power p(t). The minimum

charging phase length is ∆t, which is imposed by the

hardware.

Fig. 2 illustrates the relations among the notations of

the charging phase, the sending phase, the harvesting power

(charging power), the transmission power (sending power), and

the remaining energy.

B. Problem Formulation

Let H(t) be the total energy charged into the battery before

time t, which can be calculated as follows.

H(t) =

k−1∑
i=1

∫ t2i−1

t2i−2

p(t) dt +

∫ min{t,t2k−1}

t2k−2

p(t) dt,

where k satisfies t2k−2 < t ≤ t2k.

Authorized licensed use limited to: Southeast University. Downloaded on January 14,2026 at 03:14:28 UTC from IEEE Xplore.  Restrictions apply. 



SHAN et al.: OPTIMAL HTT SCHEDULING FOR THROUGHPUT MAXIMIZATION 3143

Let E(t) be the total energy consumed before time t, which

can be calculated as follows.

E(t) =

k−1∑
i=1

∫ t2i

t2i−1

ρ(t) dt +

∫ min{t,t2k}

min{t,t2k−1}

ρ(t) dt,

where k satisfies t2k−2 < t ≤ t2k.

Let R(t) be the remaining energy in the battery at time t,

R(t) = Einit + H(t) − E(t).

We ensure that the remaining energy cannot be negative:

R(t) ≥ 0, ∀t ∈ [0, T ]. (2)

Because current technology cannot fully charge the battery

wirelessly in a short time, the battery capacity is assumed

to be large enough and can never be overcharged. Therefore,

the battery capacity does not affect the performance of any

schedule.

During the sending phase, the received signal at time t from

the transmitter is given as

Ut = htX + Nt

where Nt ∼ CN (0, 1) is the circularly-symmetric complex

Gaussian noise at the AP with unit variance, and ht denotes

the channel fading coefficient. Accordingly, the transmission

power ρ(t) at time t is tightly related to the transmission rate

r(t) through the power-rate function of Eq. (3), as commonly

assumed [13], [15], [16]

r(t) = log(1 + |ht|
2
ρ(t)). (3)

Note that in some other related works, it is also common to

assume r(t) = 1
2 log(1+ |ht|

2
ρ(t)), and our proposed method

is easy to be extended to these cases. In fact, as long as

r′′(t) < 0, our main results of this paper hold, more details

can be found in the next section. In this paper, we assume

|ht| = 1. As a consequence, the total amount of data trans-

mitted during the entire time interval [0, T ] can be calculated

by the following equation

B =

m∑
i=1

∫ t2i

t2i−1

log(1 + ρ(t)) dt. (4)

Since we are maximizing the throughput over a fixed period

of time, we can simplify the problem by considering the total

amount of data transmitted as the throughput. Therefore, B in

Eq. (4) represents the data throughput.

Definition 1 (The HTT-scheduling problem): Let p(t), t ∈
[0, T ] be the harvesting power, the HTT-scheduling problem

is to determine the phase switching points ti, i = 1, 2, . . . , 2m
and the transmission power ρ(t) in sending phases, so that

the data throughput B in Eq. (4) is maximized while sat-

isfying the power constraint Eq. (1) and remaining energy

constraint Eq. (2).

The HTT-scheduling problem of Definition 1 is called the

offline case if the function p(t), 0 ≤ t ≤ T is completely

known before scheduling. It is called the online problem if

p(t) is not known until time t reaches the start time of a two-

phase cycle.

Unless otherwise specified, we use watt as the unit for

power, joule for energy, second for time, and KB for

throughput.

III. THE wopt POWER

In this section, we introduce the notion of wopt power,

which will play a key role in designing an optimal HTT

schedule. We use a simplified HTT-scheduling problem to

explain this notion.

Definition 2 (Basic HTT-scheduling problem): An HTT-

scheduling problem with the following 2 assumptions is called

basic HTT-scheduling problem. 1) The harvesting power p(t)
remains constant for the entire duration of [0, T ]; and

2) there is no limit on the maximum transmission

power ρmax.

It is well-known that [12], [15], and [19] if the wireless

transmitter does not harvest any energy but solely relies on the

initial energy Einit for the entire duration of T , then, because

of the concave property of the power-rate function Eq. (3), the

optimal transmission power is

ρ =
Einit

T
, (5)

which depends on both the initial energy and the length of the

duration in consideration.

Now we consider the wireless device has another option:

It can harvest RF power to charge the battery. In this case,

if there are multiple charging phases, we can always move a

later charging operation to an earlier time. Therefore, for this

case, a single charging phase followed by a single sending

phase will produce an optimal solution.

Let us discuss how to determine the switching point between

these two phases. Suppose that the phase-switching point

is t1. Because a single constant transmission power ρ should

be used in the sending phase, we obtain the following

equation.

Einit + pt1 = ρ(T − t1).

Therefore,

t1 =
ρT − Einit

p + ρ
. (6)

Since the data transmission rate is log(1 + ρ) at transmission

power ρ, the total throughput B can be calculated by B =
(T − t1) log(1 + ρ). Plugging in the expression (6) for t1,

we obtain the following function (7) for B. Clearly, it is a

function of variable ρ.

B(ρ) = (pT + Einit)
log(1 + ρ)

p + ρ
. (7)

To help understand the function B(ρ), we illustrate its shape

in Fig. 3(a) when p = 10, Einit = 7.6 and T = 8. It can be

seen that there is a maximum value of B(ρ) for ρ ∈ [0, 30].
To analytically locate the maximum value of function B(ρ),
we calculate its first and second order of derivatives as shown

below.

B′(ρ) = (pT + Einit)(
log(1 + ρ)

p + ρ
)′

=
pT + Einit

(p + ρ)2
[(1 +

p − 1

1 + ρ
)

1

ln 2
− log(1 + ρ)].
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Fig. 3. (a) The shape of B(ρ) in Eq. (7) when p = 10, Einit = 7.6 and
T = 8, which is maximized at ρw ≈ 7.2 and the phase switching time in
Eq. (6) is t1 = 2.9. (b) The curve of function ρ = Pw(p) when ρmax = 7.

Because (pT +Einit)/((p+ρ)2) > 0, we define function g(ρ)
as

g(ρ) = B′(ρ)/
pT + Einit

(p + ρ)2

= (1 +
p − 1

1 + ρ
)

1

ln 2
− log(1 + ρ).

Obviously, for any given ρ, g(ρ) and B′(ρ) share the same

sign and zero point. Because

g′(ρ) = −
p − 1

(1 + ρ)2 ln 2
−

1

(1 + ρ) ln 2

= −
p + ρ

(1 + ρ)2 ln 2
< 0,

g(ρ) monotonically decreases. Hence B(ρ) is concave and its

maximum value can be found at point ρw, such that g(ρw) =
0. By setting g(ρw) = 0 we have the following derivations:

(1 +
p − 1

1 + ρw

)
1

ln 2
= log(1 + ρw),

EXP(1 +
p − 1

1 + ρw

) = 1 + ρw,

p − 1

1 + ρw

EXP(
p − 1

1 + ρw

) =
p − 1

e
,

W(
p − 1

e
) =

p − 1

1 + ρw

,

where function W(z) is called the Lambert W function [25],

which has the following property,

W(z)EXP(W(z)) = z.

Therefore, we have

ρw =
p − 1

W(p−1
e

)
− 1. (8)

Fig. 3(a) shows an example of the function B(ρ). Since

ρw ≈ 7.2 for this example, t1 = ρT−Einit

p+ρ
= 7.2×8−7.6

10+7.2 = 2.9.

From Eq. (6), we observe that, if ρT ≤ Einit, then

t1 should be 0 or negative, which means no charging is

needed. We state the main result in the following lemma,

whose correctness follows directly from the above discussion.

Lemma 1: If Einit ≤ ρwT , then the optimal solution for

the basic problem in Definition 2 consists of a charging phase

and a sending phase. The phase transmission power is ρ = ρw

determined by Eq. (8) and switching point is t1 determined by

Eq. (6). If Einit ≥ ρwT , then no charging phase is needed,

and the transmission power is determined by Eq. (5).

We further have the following important theorem, despite

the optimal charging/sending phase switching point, namely

t1 from Eq. (6), depends on Einit, p and T .

Theorem 1: The optimal sending power ρw is independent

of Einit and T , and depends only on the harvesting power p
when Einit ≤ ρwT .

This theorem is quite surprising. It plays a key role in

the optimal solutions for the general HTT-scheduling problem

defined in Definition 1.

Some previous work in the literatures [15] and [19] also

studied the same basic problem, but they all failed to discover

Theorem 1 because they focused on finding the optimal phase

length t1, while we, instead, focus on computing the optimal

transmission power ρ. In a recent attempt by Zewde and

Gursoy [15], the optimal harvesting time from Eq. (25) in [15],

τ∗
B =

eW( p−1

e
)+1 − 1

p + eW( p−1

e
)+1 − 1

, (9)

is a specially case of our optimal phase switching time t1 from

Eq. (6) by setting ρ = ρw,

t1 =
ρwT − Einit

p + ρw

=
( p−1

W( p−1

e
)
− 1)T − Einit

p + p−1

W( p−1

e
)
− 1

. (10)

Note that eW( p−1

e
)+1 = p−1

W( p−1

e
)

by the definition of the

Lambert W function. When T = 1 and Einit = 0, our result

Eq. (10) can be reduced to their result Eq. (9). However,

we instead, focus on the optimal transmission power, which

leads to the surprising new discovery in Theorem 1. Our

discovery reveals an essential property of RF powered data

transmission that has never been disclosed before.

We now introduce the wopt power in preparation for the

general case, where the wireless power p may change from

time to time.

Definition 3 (wopt power Pw(p)): For any given harvest-

ing power p, the wopt power Pw(p) is defined as follows.

Pw(p) = min{
p − 1

W(p−1
e

)
− 1, ρmax}, (11)

where ρmax is the maximum available transmission power

which is imposed by the hardware.

The function Pw(p) is the most important concept through-

out this paper. Fig. 3(b) shows the curve of this function for

the range of p ∈ (0, 12) and ρmax = 7 to give the reader an

intuitive idea of this function. For any given wopt power ρ
which is less than ρmax, we can compute its inverse function

to obtain the harvesting power p = P−1
w (ρ).

IV. AN OPTIMAL OFFLINE SOLUTION FOR

DECREASING HARVESTING POWER

In this section and in the following section, we will develop

an optimal offline algorithm for the HTT-scheduling problem

defined in Definition 1, which is the basis of the algorithm

for the general case investigated in the next section. In this
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section, we solve a simpler case where the harvesting power

function p(t) is assumed to be monotonically decreasing.

Before we design the algorithm that computes the optimal

solution, we first want to see what the optimal solution should

be like. We therefore present the following theorems on the

optimal solution.

Theorem 2: For HTT-scheduling problem, when the har-

vesting power p(t) is monotonically decreasing, there exists an

optimal solution in which a power level w exists such that (1)

in any charging phase we have p(t) > w, (2) in any sending

phase we have p(t) ≤ w, 0 ≤ t ≤ T . The level w is called the

dam height.

Theorem 3: In the optimal solution, when the harvest power

p(t) is monotonically decreasing, the sending power of the

sending phase should be Pw(w), where w is the dam height.

Theorem 2 and 3 are special cases of Theorem 5 and 6,

respectively. Due to space constraints, we provide the full

proofs in the extended version of this paper [36].

From Theorem 2 and Theorem 3, we have known that

there is an important dam height, which not only distinguishes

charging phases from sending phases but also determines the

sending power. Therefore, once the optimal dam height is

determined, the HTT schedule is determined.

Definition 4 (Dam w HTT-schedule): Given the harvesting

power p(t) and the initial battery energy Einit, the following

scheduling is called the Dam w HTT-schedule.

• Any charging phase [a, b] satisfies p(t) ≥ w, t ∈ [a, b].
• Any sending phase [c, d] satisfies p(t) ≤ w, t ∈ [c, d], and

its sending power is Pw(w).
Note that, inside either phase, we may have p(t) = w. This

could occur especially when p(t) is a constant function.

Now the only question is how to find the optimal dam height

wopt such that the Dam wopt HTT-schedule maximizes data

throughput before T .

We start from the following lemma, which is obviously true

with no need of proof.

Lemma 2: In a Dam w HTT-schedule, when the dam height

w increases, the energy used in sending increases, while

charged energy decreases as charging phases shrink, hence

the remaining energy R(T ) reduces monotonically.

Since in the optimal HTT-schedule, there must be no

remaining energy in the battery at the ending time T , our

strategy is to search the optimal dam height wopt such that in

the Dam wopt HTT-schedule, R(T ) = 0.

We hence design the dam raising system to find the

optimal dam height. Such a system is built upon the time-

power diagram, as presented in Fig. 4. Note that in this

diagram, we introduce a virtual phase with a virtual harvesting

power p(t) = wmax, where wmax = P−1
w (ρmax), t ∈

[−Einit/wmax, 0]. This virtual phase is to pre-charge the

battery to Einit.

We now introduce the dam raising system on the time-power

diagram in Fig. 4. The curve of p(t) is treated as a mountain.

Although in the current decreasing harvesting power case,

there is only one downslope, our system is intended for

general p(t) where both downslopes and upslopes exist, i.e.,

there are hills and valleys. In this mountain area, we want to

build a dam to hold water (in the valley and underground).

Fig. 4. An example of the dam raising system and how the dam is raised.
(a) The dam raising system is introduced on the time-power diagram, where
the curve of p(t) is treated as a mountain (especially for the general p(t)).
In this mountain area, a dam is built to hold water. A dam with height w can
hold the water table with height Pw(w) (see Section III). The dam height
w divides the mountain area into hills and valleys. Only the valley and its
underground hold water, no water beneath the surfaces of the hill. The area
right beneath the surface of the hill is called the dry zone (charging zone),
whose area is actually the amount of energy charged into the battery; the
area right beneath the water table is called the water zone (sending zone)
whose area is actually the energy consumed for sending data. (b) In the dam

raising system, the dam height w is raised slowly to find its optimal position.
It starts with w = 0 and stops raising as soon as the dry zone area equals
the water zone area. The green curve indicates the remaining energy in the
battery, which increases during the charging phase and decreases during the
sending phase.

Assume a dam with height w can hold the water table with

height Pw(w). The dam height w divides the mountain area

into hills and valleys. Only the valley and valley underground

hold water, no water beneath the surface of the hill. The area

right beneath the surface of the hill is called dry zone; the

area right beneath the water table is called the water zone.

The dam has the maximum height P−1
w (ρmax) and the water

table has the maximum height ρmax. Hence, the virtual phase

is guaranteed to be a charging phase in our system.

Since an area on the time-power diagram represents an

amount of energy, the dry zone area corresponds to the energy

harvested into the battery, while the water zone area corre-

sponds to the energy consumed in sending data. Therefore,

the difference between the two zone areas is the remaining

energy R(T ). In Fig. 4, the green curve with its corresponding

right y-axis indicates the remaining energy in the battery,

which increases during the charging phase and decreases

during the sending phase.

The core of the dam raising system is to raise the dam height

from w = 0, and stop as soon as the dry zone area equals the

water zone area. Then the optimal dam height and the optimal

water table are found. At the very beginning, the entire area

is a dry zone with no water zone. As the dam height is raised,

the dry zone shrinks horizontally, while the water zone grows

both horizontally and vertically. Hence, a unique dam height

can be found that equals the two zone areas. The dam raising

stops at this height.

For any Dam w HTT-schedule, it is easy to compute the

remaining energy R(t) at any time t ∈ [0, T ]. And R(t) is
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illustrated by the green remaining energy curve on the dia-

gram in Fig. 4. Let a procedure is_shortage(ts, te, E0, w)

checks whether any part of the remaining energy curve in

duration [ts, te] goes below 0 which means energy shortage

and infeasible schedule, where E0 is the initial energy for

[ts, te], and w is the dam height. The procedure returns true

if there is any shortage, false if the schedule is feasible.

Obviously, the time complexity of this check is O(|te − ts|).
Hence, we want to find the highest dam height w such that

is_shortage(0, T, Einit, w) returns false.

In the formal algorithm, the process of dam raising can

be efficiently speeded up by bisection searching. Algorithm

dam_raising_shotg provides formal details.

A simple call to dam_raising_shotg(0, T, Einit) will

return the optimal dam height.

Theorem 4: Algorithmdam_raising_shotg(0, T, Einit)

computes the optimal HTT schedule, and time complexity of

the algorithm is O(T · log(ρmax

∆ )), where ∆ is the desired

accuracy.

Proof: See Appendix A. □

V. THE OPTIMAL OFFLINE SOLUTION FOR

GENERAL HARVESTING POWER

The section focuses on the general harvesting power case

and extends results for the special case of the monotonically

decreasing harvesting power. Before we design the algorithm

that computes the optimal solution, we first present the fol-

lowing theorems on the optimal solution. It is not hard to see

that the following theorems are similar to those in the previous

section.

Theorem 5: For the general HTT-scheduling problem,

when the harvesting power p(t) is a general function, in the

optimal schedule, there exists a set of time τi, and the power

level wi for interval [τi−1, τi], in which (1) for any charging

phase, we have p(t) > wi, (2) for any sending phase,

we have p(t) ≤ wi, 0 ≤ t ≤ T, i = 1, 2, . . . , n, unless p(t)
monotonically increases in [τi−1, τi]. The power level wi is

called the dam heights.

Proof: See Appendix B. □

Lemma 3 (Expanding and shrinking): Suppose w and ρ
are the dam height and sending power in a sending phase.

If Pw(w) < ρ (Pw(w) > ρ) satisfies, then there exists an

operation that expands (shrinks) a sending phase via including

Algorithm 1 dam_raising_shotg(ts, te, E0)

1 wlower = 0;

2 wupper = ρmax;

3 while wupper − wlower > ∆ do

4 w =
wupper+wlower

2 ;

5 if is_shortage(0, T, Einit, w)=false then

6 wlower = w
7 else

8 wupper = w
9 end

10 end

11 return w

Fig. 5. The dam is raised in the dam raising system for general harvesting
power. (a) For general p(t), there are more than one dry zone and water zones.
However, all underground water is connected, so they share the same water
table in all valleys. (b) When the dam is raised, the water table rises too. The
dam raising will create new valleys and open new water zones. As the dam
height w grows larger, the green remaining energy curve increases less but
decreases in a larger slope, as a result, this curve generally becomes lower
in position. We stop raising once the green curve touches the x-axis because
that means the battery is energy-critical at the touch point.

(excluding) a small duration at both ends while meeting the

following constraints.

• The operation doesn’t change the energy consumption.

• The operation doesn’t decrease the throughput.

Proof: See Appendix C. □

Theorem 6: In any sending phase of the optimal HTT

schedule, the sending power is Pw(w), where w is the dam

height of the sending phase.

Proof: See Appendix. D □

Due to the similarity between these theorems and the

theorems in the previous section, dam raising system can be

conveniently extended to the general p(t) function. Recall that

the dam height is raised slowly (so as the water table), and

the dam height stops rising once the dry zone area equals

the water zone area, which indicates the harvesting energy

is used up in sending data. The dam height and water table

are raised exactly the same way for the general p(t) function.

One of the differences is that there may be more than one

dry zone and more than one water zone. The dam height will

meet each valley in order when it rises. When the dam height

is raised, the total dry zone area grows, but the total water

zone area shrinks, e.g., Lemma 2 still holds. We stop when

the two areas are equal. We define such a revised algorithm

dam_raising_general. This algorithm is executed on the

part of the p(t) from Fig. 2, and the results are given in Fig. 5.

However, the biggest difference for the general p(t) function

is that it is not always possible that one dam height can make

the dry zone area be equal to the water zone area. If we
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Fig. 6. The dam raising system may generate multiple dam heights. (a) The dam height is slowly raised to the highest position that is feasible. In such a
position, there must be an energy-critical point so that further raising will cause an energy shortage. The dam height before such a point is optimal. (b) Once
the battery is energy-critical (t4 at (a)), we charge the battery for ∆t time. Starting at this point, the same problem repeats. In this new problem, the remaining
energy curve will not touch the x-axis until the dam continues to be raised above p(t4). This is called the fast switching cycle. (c) A number of adjacent fast
switching cycles follow, and they are called the fast switching period. (d) When the dam continues to be raised above p(t6), the first energy-critical point
that appears is tend. Therefore, the fast switching period ended. (e) Full view of the fast switching period. The fast switching period begins at t4 and ends
at t6, and there are 2 fast switching cycles in the fast switching period: t4 ∼ t5 and t5 ∼ t6.

consider a longer p(t) function from Fig. 2, then the problem

arises. As in Fig. 6(a), since the dry zone in [t4, ta] is larger

than the following water zone, the total area of the dry zone

is larger than that of the water zone. We may want to raise the

dam to enlarge the charging zone and shrink the sending zone.

However, the raise is impossible, because we already have

the two zones equal before time t4, i.e., the green remaining

energy curve touches the x-axis at time t4. Note that although

R(t4) = 0, there is still a certain amount of energy at time t4 to

keep the device functional which is not considered in the dam

raising system design. So there is no single dam height for

the entire duration [0, T ] such that the two zones before T are

equal.

In conclusion, throughout the entire duration [0, T ], the

optimal dam height does not necessarily stay unchanged.

Instead, it may change multiple times. Assume it changes at

time t = τi, i = 1, 2, · · · , n, and stays constant in all adjacent

cycles in [τi−1, τi) at wi. Now, the problem becomes how to

find all the dam height wi and the dam height changing points

τi, i = 1, 2, · · · , n.

Before we go any further with the algorithm, we first

investigate some optimality properties of the optimal dam

height.

Lemma 4: Any two distinct dam heights from two disjoint

durations can be equalized to transmit more data in these two

durations, unless infeasible solution results.

Proof: See Appendix E. □

Lemma 5: The optimal dam height increases only.

Lemma 6: The optimal dam height increases at energy-

critical points.

The proofs of Lemma 5 and Lemma 6 can be obtained by

applying Lemma 4. Due to space limitations, the details are

provided in the extended version of this paper [36].

The battery must be charged once it is energy-critical, the

following definitions state what is the energy-critical point and

how it is charged in the optimal solution.

Definition 5 (The energy-critical point): If at time point t
the energy in the battery available for transmitting the

data is 0, then the time point t is an energy-critical

point.

Note that, at an energy-critical point, there is only a little

energy that keeps the device functional remains and there’s no

energy available for transmitting the data.

Immediately following an optimal energy-critical point,

there must be a charging phase with length at least length ∆t,
where ∆t is the minimum time required for a device to stay

harvesting which is imposed by the hardware.

Definition 6 (The fast switching cycle and fast switching

period): A cycle is called the fast switching cycle if its charging

phase is with length ∆t, and the sending phase uses up all

the energy in the battery. Adjacent fast switching cycles are

called a fast switching period.

Note that an example of the optimal solution that satisfies all

the above Lemma 5, 6 and Definition 6 is given in Appendix F.

We are now ready to present the algorithm. The high level

idea is quite simple, we want to find the first dam height

changing point for the optimal dam height and after such

a point, the same problem repeats. According to Lemma 6,

1) at such a point, the battery is energy-critical, and 2) before

such a point, there is a single dam height, and 3) after such

a point, the dam height increases. Hence, we find the largest

dam height w for the entire duration that is feasible with an

energy-critical point. We will prove later that such a point

is the first optimal dam height changing point, and the dam

height w is also optimal before such a point.

We can call the previously introduced dam_raising-

_shotg to directly return such a dam height w. Let the

procedure of finding the energy-critical point for w be

find_emptyP(ts, te, E0, w), where [ts, te] is the duration in

consideration, E0 is the initial energy for such duration, and

w is the given dam height. The procedure returns the first

energy-critical point τ if it exists. Starting from τ , we charge

the battery for ∆t time, and charge
∫ τ+∆t

t=τ
p(t) dt energy into

the battery. The point τ +∆t will be treated as the new starting

point for the next iteration.

Algorithm Varying_Source_WPT computes all the

changing points and the dam heights.

Theorem 7: The algorithm Varying_Source_WPT com-

putes the optimal schedule for the offline problem, and the time

complexity of the algorithm is O(T 2 log(ρmax

∆ )/∆t).
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Algorithm 2 Varying_Source_WPT

1 τ0 = 0, E0 = Einit;

2 while τ0 < T do

3 w=dam_raising_shotg(τ0, T, E0);

4 τ=find_emptyP(τ0, T, E0, w);

5 Set dam height w in [τ0, τ ];

6 τ0 = τ + ∆t, E0 =
∫ τ+∆t

t=τ
p(t) dt;

7 end

Proof: See Appendix G. □

An example of the execution of Algorithm Varying-

_Source_WPT is illustrated in Fig. 6. By line 3, we slowly

raise the dam height w and the corresponding water

table Pw(w).
As the dam height w grows larger, the green remaining

energy curve increases less but decreases in a larger slope,

as a result, this curve generally becomes lower in position.

Once the dam height w is raised to a height that causes the

curve to touch the x-axis, we stop, because that means the

battery is energy-critical at the touch point. Line 3 returns this

height w and line 4 returns the time of the touch point τ .

We have proved such dam height is optimal. Note that, since

the battery is energy-critical at τ , according to Definition 6,

we set interval [τ, τ+∆t] to charge the battery, and the charged

energy E0 =
∫ τ+∆t

t=τ
p(t) dt. In Fig. 6(b), the remaining energy

curve will not touch the x-axis until the dam height continues

to rise above P (t4). Since the previous charging phase length

∆t is small, the initial energy E0 =
∫ τ+∆t

t=τ
p(t) dt is small,

so with a small sending phase, the curve touches x-axis, and

we stop. This is called the fast switching cycle, obviously,

there will be fast switches in this period among harvesting

and transmitting phases. The fast switching period may last

for a number of more cycles, like in Fig. 6(c). In Fig. 6(d),

when the dam continues to be raised above p(t6), the first

energy-critical point that appears is tend. Therefore, the fast

switching period ended. Fig. 6(d) gives a full view of the fast

switching period. The fast switching period starts from t4 and

ends at t6. There are 2 fast switching cycles in the period:

t4 ∼ t5 and t5 ∼ t6.

A more complicated example with three dam heights and

two fast switching periods is given in Appendix F.

VI. ONLINE ALGORITHM AND SIMULATIONS

In this section, we study the online HTT-scheduling prob-

lem, where the phase switching points and the transmission

power are determined based on the past and current harvesting

power, i.e., any p(t) is not known until time t. We propose

a heuristic algorithm, namely dam guided online algorithm,

which is based on the optimal properties obtained from the

offline problem. We then provide some basic theoretical anal-

ysis of this online algorithm. Finally, performance evaluation is

conducted by comparisons with the optimal offline solutions.

A. Online Algorithm

The core idea of dam guided online algorithm is to

use the history average harvesting power to anticipate any

TABLE I

SUMMARY OF ONLINE SETTINGS TO l1 AND l2

unknown further harvesting power and compute the next

charging-sending cycle based on the current harvesting power.

Meanwhile, we do not want the next cycle to last too long,

because harvesting power is time-varying and we have no

future information. We want the cycle to be as short as

possible.

More specifically, assume at the current time t, the charging

power is p and the battery energy is Er, while the history

average charging power is p̄. Suppose l1, l2, and ρ are the

lengths of the charging phase, sending phase, and the sending

power respectively, which are to be determined by the online

algorithm.

A total of (l1 + l2)p̄ energy is expected to be harvested on

average in the next cycle if both phases are used for charging.

If we set the sending power to be Pw(p̄) in the second phase,

then compared with the both phase charging case, this sending

phase not only costs l2Pw(p̄) energy in sending data, but also

costs l2p̄ energy less charged into the battery. Therefore, the

remaining energy is (l1 + l2)p̄ − (l2Pw(p̄) + l2p̄) = l1p̄ −
l2Pw(p̄), i.e., the sum of both cost should be deducted.

As long as l1 and l2 are small enough, we can treat

harvesting power as a constant, which is p. Then, the sending

phase with length l2 costs l2Pw(p̄) + l2p energy loss, includ-

ing l2Pw(p̄) energy consumed and l2p energy less charged.

We want the energy loss to equal to the expected energy

harvesting, e.g., (l1+ l2)p̄ = l2(Pw(p̄)+p) because the energy

charged and energy consumed should equal in a long run.

Therefore, l1 and l2 satisfies

l2
l1 + l2

=
p̄

p + Pw(p̄)
. (12)

Obviously, only if p̄
p+Pw(p̄) < 1, then l1 > 0. Hence, we set

l1 = 0 and l2 = ∆t when p̄
p+Pw(p̄) ≥ 1. When 1

2 < l2
l1+l2

< 1,

l1 is smaller than l2, we hence set t1 = ∆t and compute

l2 accordingly, l2 = p̄
p+Pw(p̄)−p̄

∆t. When l2
l1+l2

≤ 1
2 , l2 is

smaller, hence we set l2 = ∆t and l1 = p+Pw(p̄)−p̄

p̄
∆t. These

settings to l1 and l2 are summarized in Table I.

The Algorithm dam_guided_online presents the

detailed pseudo code.

B. The Basic Theoretical Analysis

The general idea of our basic theoretical analysis is, we take

two general intervals and analysis the throughput and energy

usage within both intervals. Assume the time-varying harvest-

ing power function p(t), 0 ≤ t ≤ T has the average power at p̄,

then the two taken intervals must also average to p̄, otherwise,

they are not general enough. Let them be called interval x and

interval y, both with length L. If x and y both have harvesting

powers equal to p̄, then it is quite straightforward to check
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Algorithm 3 dam_guided_online(Er, t, p)

1 Update the average harvesting power p̄;

2 if
p+Pw(p̄)

p̄
≤ 1 then

3 l1 = 0;

4 l2 = ∆t;

5 else if 1 < p+Pw(p̄)
p̄

≤ 2 then

6 l1 = ∆t;
7 l2 = p̄

p+Pw(p̄)−p̄
∆t;

8 else if 2 < p+Pw(p̄)
p̄

then

9 l1 = p+Pw(p̄)−p̄

p̄
∆t;

10 l2 = ∆t;
11 end

12 if Er + l1p − l2Pw(p̄) < 0 then

13 l2 = 0;

14 end

15 Set charging phase [t, t + l1);
16 Set sending phase [t + l1, t + l1 + l2), and sending power

Pw(p̄);

that the proposed online algorithm produces a solution with

throughput equal to the offline optimal solution.

We therefore focus on the cases when harvesting power in

the two intervals varies. Assume p(t) is bounded by pmin ≤
p(t) ≤ pmax, 0 ≤ t ≤ T , and pmin = (1 − γ)p̄ and

pmax = (1+γ)p̄, where γ represents the deviation of variation.

We study the case where the two taken intervals have the

largest variation deviation of p(t) because the throughput and

energy usage are affected the most. Without loss of generality,

we assume the harvesting power p = (1 − γ)p̄ in interval x
and p = (1+γ)p̄ in interval y, and x is before y. We will show

next the throughput and energy usage differences between a

simple offline solution and the online solution by the proposed

online algorithm.

Assume in an offline solution, all energy harvested is used

up in x and y, respectively, that is

Eoff = 0.

Then, according to the constant harvesting power analysis in

Section III and Eq. (7), we have the throughput for this offline

solution as follows,

Boff = (1 − γ)p̄L
log(1 + Pw((1 − γ)p̄))

(1 − γ)p̄ + Pw((1 − γ)p̄)

+ (1 + γ)p̄L
log(1 + Pw((1 + γ)p̄))

(1 + γ)p̄ + Pw((1 + γ)p̄)
. (13)

Since function Bon(p) = pL log(1+Pw(p))
p+Pw(p) is a concave func-

tion, so according to Jensen’s inequality, we have

Boff ≤ 2p̄L
log(1 + Pw(p̄))

p̄ + Pw(p̄)
. (14)

We now study the throughput and energy usage of the online

solution produced by the proposed online algorithm. Since

the online algorithm produces cycles with very small lengths,

we first investigate the length percentage of both phases.

Since the sending phase length percentage has already been

presented in Eq. (12), the charging phase length percentage is

therefore l1
l1+l2

= 1 − p̄
p+Pw(p̄) . Therefore, we have

lx1

lx1 + lx2
= 1 −

p̄

(1 − γ)p̄ + Pw(p̄)
, lx1 + lx2 = L

ly1

ly1 + ly2
= 1 −

p̄

(1 + γ)p̄ + Pw(p̄)
, ly1 + ly2 = L

Therefore,

lx2 =
p̄

(1 − γ)p̄ + Pw(p̄)
L

ly2 =
p̄

(1 + γ)p̄ + Pw(p̄)
L

The throughput of the solution by our online algorithm is the

sum of all data sent in every sending phase in both intervals x
and interval y.

Bon = lx2 log(1 + Pw(p̄)) + ly2 log(1 + Pw(p̄))

=
p̄

(1 − γ)p̄ + Pw(p̄)
L log(1 + Pw(p̄))

+
p̄

(1 + γ)p̄ + Pw(p̄)
L log(1 + Pw(p̄)).

Since function Boff (p) = p̄L log(1+Pw(p̄))
p+Pw(p̄) is a concave

function, so

Bon ≥ 2p̄L
log(1 + Pw(p̄))

p̄ + Pw(p̄)
. (15)

Therefore,

Bon ≥ Boff . (16)

The energy harvested into the system by our online

algorithm in charging phases of both x and y is

Eon
in = (1 −

p̄

(1 − γ)p̄ + Pw(p̄)
)L(1 − γ)p̄

+ (1 −
p̄

(1 + γ)p̄ + Pw(p̄)
)L(1 + γ)p̄

= Lp̄(
(1 − γ)(1 − γ p̄

Pw(p̄) )

(1 − γ) p̄
Pw(p̄) + 1

+
(1 + γ)(1 + γ p̄

Pw(p̄) )

(1 + γ) p̄
Pw(p̄) + 1

).

The energy consumed in the sending phases of both intervals

is

Eon
out =

p̄

(1 − γ)p̄ + Pw(p̄)
LPw(p̄)

+
p̄

(1 + γ)p̄ + Pw(p̄)
LPw(p̄)

= Lp̄(
1

(1 − γ) p̄
Pw(p̄) + 1

+
1

(1 + γ) p̄
Pw(p̄) + 1

).

So,

Eon = Eon
in − Eon

out = Lp̄(
−γ − γ p̄

Pw(p̄) + γ2 p̄
Pw(p̄)

(1 − γ) p̄
Pw(p̄) + 1

+
γ + γ p̄

Pw(p̄) + γ2 p̄
Pw(p̄)

(1 + γ) p̄
Pw(p̄) + 1

) = 0 = Eoff .

In conclusion, our online algorithm produces a solution that

delivers more data than a simple offline solution using the
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Fig. 7. The achieved throughput by the online algorithm to the offline optimal throughput. The default setting is total time T = 150s, the mean harvesting
power p̂ = 0.22W, and the harvesting power deviation γ = 0.5. In (a), the total time slot T varies from 25s to 175s, with a step of 25s. In (b), the mean
harvesting power p̂ varies from 0.04W to 0.4W with a step of 0.06W. In (c), the harvesting power deviation γ varies from 0.1 to 0.7 with a step of 0.1.

same amount of energy, i.e., Bon ≥ Boff and Eon = Eoff .

Besides, if the harvesting power p(t) is a constant and not

allowed to change, i.e., γ = 0, then our online algorithm

generates exactly the same solution as the offline optimal

solution, i.e., Bon = Boff .

C. Simulations

In this subsection, the proposed dam_guided_online

algorithm is implemented and its efficiency is investigated

through simulations. In this evaluation, we compare the per-

formance of the proposed online algorithm against the optimal

offline solution. We also compare the performance of the

proposed algorithm against the time-sharing algorithm. Note

that the throughput of the optimal offline solution is the upper

bound any online algorithm can ever achieve. A desired online

solution is very close to the optimal offline solution.

In simulations, we assume there exists some small time

interval length, in which the harvesting power does not change.

We call such a small time interval a time slot. A total of T
time slots are considered in evaluating the proposed algorithm,

by default T = 150s. For all time slots, the harvesting power

is assumed to be a random variable following the uniform

distribution U((1 − γ)p̂, (1 + γ)p̂), with the default mean

harvesting power p̂ = 0.22W, and default harvesting power

deviation γ = 0.5.

In this simulation, we change the total time slot T , the

mean harvesting power p̂, and the harvesting power deviation

γ, one at a time, to evaluate their impact on the algorithm

performance, as in [27]. Each value shown in the figures of this

section is the mean value of simulation results from 20 random

instances, and in each instance, a total of T harvesting powers

are generated according to the above model.

The ratio that the online algorithm achieves the offline max-

imum throughput is illustrated in Fig. 7, where the throughput

of our online algorithm is compared to the offline optimal

solution that maximizes the throughput.

In Fig. 7(a), the total time slot T varies from 25s to 175s,

with a step of 25s. We can see that as the total time T
increase, the throughput increases as well. Meanwhile, the

larger the total time slots, the better our online algorithm

performance. This is because the heart of our online algorithm

is to accurately anticipate future powers, and we use the

Fig. 8. The achieved throughput by the time-sharing algorithm (α = 0.1,
α = 0.3, α = 0.5), proposed online algorithm and proposed offline algorithm.
The default setting is total time T = 150s and the harvesting power deviation
γ = 0.5. The mean harvesting power p̂ varies from 0.04W to 0.4W with a
step of 0.06W.

history average harvesting power. For more time slots, the

more accurate the history average is in prediction. However,

even if the total time slot is only 25s, the achieved ratio is

nearly 88%, and for larger total time, the achieved ratio is

around 92%.

In Fig. 7(b), the mean harvesting power p̂ varies from

0.04W to 0.4W with a step of 0.06W. We can see that both

the throughput and the efficiency of the proposed algorithm

increase as the mean harvesting power p̂ increases. This is

because when p̂ goes smaller, more time is needed to harvest

the same amount of energy. As a result, more difficulty

should be faced for our heuristic algorithm to achieve a good

throughput, so its efficiency drops. However, in all tested cases,

the achieved ratio stays higher than 85%.

In Fig. 7(c), the harvesting power deviation γ varies from

0.1 to 0.7 with a step of 0.1. The throughput of our online

algorithm stays approximately the same while the offline

algorithm increases as the deviation γ increases. This is

because the larger the deviation, the more difficult it is to

predict the further harvesting power. Therefore, our method

based on the historical average becomes less efficient. How-

ever, we can see from the figure that even if the deviation is

as high as 0.7, our online algorithm can achieve around 90%

ratio.

The comparison of the proposed online and offline

algorithm between time-sharing algorithm is illustrated in

Fig. 8, where the mean harvesting power p̂ varies from 0.04W
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to 0.4W with a step of 0.06W. The time-sharing algorithm

is borrowed from [28], which simply divides each time slot

into the harvesting period and sending period. The ratio of

harvesting period to time slot is α. We here compared the

throughput of the time-sharing algorithm and the optimal

online and offline algorithm we proposed. We can see from

the figure that in every situation, our algorithm achieved higher

throughput than the time-sharing algorithm.

As a conclusion of the simulation, the proposed online

algorithm is efficient and achieves more than 90% of the

offline maximum throughput in most tested cases. Both the

online algorithm and offline algorithm overcome the time-

sharing algorithm.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we first formulated the throughput maxi-

mization HTT-scheduling problem for the time-varying RF

energy harvesting systems. Then the wopt power was intro-

duced, which is with a basic but important property. Based

on this property, we introduced the concept of the dam

height. We then investigated a special case of the problem,

e.g., the harvesting power is monotonically decreasing. Some

optimality properties were observed, and the dam raising

system was designed to solve the special case problem. These

properties and the dam raising system were then extended

to the general scenario, where the harvesting power can

change dynamically. Finally, an online heuristic algorithm

was proposed and simulations were conducted to evaluate its

efficiency.

Our future work will focus on extending the system model

and optimization framework to scenarios involving multiple

wireless transmitters and receivers. This direction will address

interference and distributed resource allocation in networked

environments, thereby broadening the applicability of our

results to more realistic deployment conditions.

APPENDIX

A. Proof of Theorem 4

First, we prove that the algorithm can compute the optimal

HTT schedule of decreasing harvesting power. From Lemma 2

we could know that as dam height increases, the throughput

monotonically increases and the remaining energy mono-

tonically decreases. Thus, the HTT schedule of decreasing

harvesting power is monotonic. Since monotonic problems can

definitely be solved using bisection method, the algorithm can

give optimal HTT schedule of decreasing harvesting power.

Next, we prove that the algorithm has a time complexity

of O(T · log(ρmax

∆ )). When the algorithm returns at Line 11,

we must have wupper − wlower < ∆. We know that after

each iteration, the value wupper − wlower is reduced to its

half. Therefore, after n iterations, we have wupper −wlower =
1
2n wmax. Therefore, when the algorithm returns at Line 11,

we have 1
2n wmax < ∆, which could be equivalently written

as n > log2(
wmax

∆ ). Note that in each iteration, we invoke

is_shortage for O(T ) times. So, the overall time com-

plexity is O(T · log(ρmax

∆ )).

Fig. 9. The process of improving the throughput of the “left low, right high”
situation.

Fig. 10. The process of improving the throughput of the “left high, right
low” situation.

B. Proof of Theorem 5

We prove this theorem by contradiction. In the optimal

schedule, assume, for contradictory, there does not exist time

τi and power level wi for interval [τi−1, τi] such that in the

interval any charging phase has p(t) > wi and any sending

phase has p(t) ≤ wi, then, we claim there is at least one

sending phase has different p(t) on its both ends. The core

idea of our method is to show such a schedule can be further

improved, contradicting to its optimality assumption.

There are only two situations where the p(t) on both ends of

the sending phase are not equal: the right end is higher, or the

left end is higher. Let’s call the situation where the right end

is higher the “left low, right high” and the situation where the

left end is higher the “left high, right low”, which are shown

in Fig. 9 and 10.

We first consider the “left low, right high” situation, which

is shown in Fig. 9(a). Suppose the sending phase is t1 ∼ t2 and

p(t1) < p(t2) and the sending power is ρ. Suppose E(t2) = C,

where C is a constant and C ≥ 0. Therefore, we have:

E(t0) +

∫ t1

t0

p(t) dt − ρ(t2 − t1) = C. (17)

The first step is to move t1 and t2 forward, which is shown

in Fig. 9(b). We move t1 and t2 forward to t3 and t4. In this

process we keep E(t4) = C, until we find a pair of (t3, t4)
such that p(t3) = p(t4). We could always find (t3, t4), unless

t3 touches the start point, which turned out to be a fast-

switching cycle. Note that the sending power is still ρ here.

Because t1 = t3 + (t1 − t3), Eq. (17) could also be written as

E(t0) +

∫ t3

t0

p(t) dt +

∫ t1

t3

p(t) dt − ρ(t2 − t1) = C. (18)

The second step is to find t5, which is shown in Fig. 9(c).

We need to find t5 between t4 and t2 such that E(tN ) remains

the same because E(tN ) is different between Fig. 9(a) and

Fig. 9(b). Therefore, we have:

E(t0) +

∫ t3

t0

p(t) dt +

∫ t5

t4

p(t) dt

− ρ(t4 − t3) − ρ(t2 − t5) = C. (19)
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Subtract Eq. (18) from Eq. (19) and we have:∫ t5

t4

p(t) dt −

∫ t1

t3

p(t) dt = ρ(t1 − t3) − ρ(t5 − t4). (20)

We claim that t5−t4 must no greater than t1−t3. Otherwise,

we will find that, comparing Fig. 9(a) with Fig. 9(c), more

energy is charged and less energy is used, however, the

remaining energy stays the same, which is a contradiction.

The details of the proof are as follows:

Suppose t5 − t4 > t1 − t3. Add t2 on both sides so

t2 + t5 − t4 > t2 + t1 − t3.

Move t5 − t4 and t1 to opposite side, and we have

t2 − t1 > t2 − t5 + t4 − t3.

The left part of the inequality is the length of the sending

phase in Fig. 9(a) and the right part is the length of sending

phases in Fig. 9(c). Note that the sending power is always ρ.

Therefore, the energy used to send in Fig. 9(a) is larger than

that in Fig. 9(c).

Meanwhile, from Fig. 9(c) we could find that p(t) is larger

in t4 ∼ t5 than that in t3 ∼ t1. Note that t5−t4 is also greater

than t1 − t3. Therefore, we have∫ t5

t4

p(t) dt >

∫ t1

t3

p(t) dt

Add
∫ t3

t0
p(t) dt on both sides, and we get:

∫ t3

t0

p(t) dt +

∫ t5

t4

p(t) dt >

∫ t3

t0

p(t) dt +

∫ t1

t3

p(t) dt

which could be also written as∫ t3

t0

p(t) dt +

∫ t5

t4

p(t) dt >

∫ t1

t0

p(t) dt.

The right part of the inequality is the harvested energy in

Fig. 9(a) and the left part is the harvested energy in Fig. 9(c).

Therefore, the energy harvested in Fig. 9(a) is less than that

in Fig. 9(c). Therefore, the relationship of harvested energy

between Fig. 9(a) and Fig. 9(c) contradicts the relationship

of sending-used energy between Fig. 9(a) and Fig. 9(c).

Therefore, t5 − t4 must no greater than t1 − t3.

Add t2 on both sides of t5 − t4 ≤ t1 − t3, and we have

t2 + t5 − t4 ≤ t2 + t1 − t3.

Move t5 − t4 and t1 to opposite side, and we have

t2 − t1 ≤ t2 − t5 + t4 − t3.

The left part of the inequality is the length of the sending phase

in Fig. 9(a) and the right part is the length of the sending

phases in Fig. 9(c). Note that the sending power is always

ρ. Therefore, the sending rate is always a constant, which is

log(1 + ρ). Therefore, the throughput in Fig. 9(c) is no less

than that in Fig. 9(a). Therefore, we improved the throughput

of the “left low, right high” situation.

Next, we consider the “left high, right low” situation, which

is shown in Fig. 10(a). Suppose the sending phase is t1 ∼
t2, p(t1) > p(t2), and sending power is ρ. We continuously

perform the following operations until p(t1) = p(t2).

Fig. 11. If actually sending power ρ is smaller (larger) than the optimal
sending power Pw(w), we can expand (shrink) the sending phase to improve
the solution.

First, we select a short interval of δ after t1 and t2, which

is shown in Fig. 10(b). δ must satisfy the following condition:

every p(t) in t1 ∼ t1 + δ must be greater than that in t2 ∼
t2 + δ. Therefore, we have:∫ t1+δ

t1

p(t) dt >

∫ t2+δ

t2

p(t) dt.

That is to say, the harvested energy in t1 ∼ t1+δ is larger than

that in t2 ∼ t2+δ. Then we swap these two intervals, which is

shown in Fig. 10(c). Swapping is always feasible. Because by

swapping, we first harvest and then send. After swapping, the

remaining energy at t2 + δ should be larger than 0 because

the harvested energy in t1 ∼ t1 + δ is larger than that in

t2 ∼ t2 + δ. The excess remaining energy could be used to

increase sending power in the sending phase. Therefore, the

throughput could be improved.

By continuously perform these operations, p(t1) will even-

tually equal to p(t2). Therefore, we improved the throughput

of the “left high, right low” situation.

Therefore, the p(t) on both ends of the sending phase should

be the same, otherwise, we can always improve.

C. Proof of Lemma 3

Here we draw Fig. 11 to show how we expand and shrink.

Below we prove the existence of the operation.

We first consider the situation of shrinking, which is shown

in Fig. 11(a). Suppose the original dam height is w. Therefore,

according to Eq. (8), the optimal sending power is Pw(w).
Suppose the actually sending power is ρ, and Pw(w) > ρ.

Assume we exclude a small duration of δ1 at the beginning

and exclude δ2 at the end. Note that after we shrink, both ends

are still at the same height w′. Here we use E1 to represent
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Fig. 12. The process of improving throughput while not increasing energy consumption. (a) A common situation where has two different dam heights.
(b) The balance operation. (c) The shrinking and expanding operation.

the energy consumed in the sending period before we shrink

and E2 represents that after we shrink. Therefore, we have

E1 = −ρl

E2 =

∫
δ1

p(t) dt +

∫
δ2

p(t) dt − (l − δ1 − δ2)Pw(w′)

Assume ∆E is the difference of energy consumption between

the schedules before and after we shrink. Therefore, we have:

∆E = E2 − E1

=

∫
δ1

p(t) dt +

∫
δ2

p(t) dt

+ (lρ − (l − δ1 − δ2)Pw(w′)).

When δ1 + δ2 = l, we have:

∆E =

∫
δ1

p(t) dt +

∫
δ2

p(t) dt + ρl > 0.

When δ1 + δ2 = 0, which means w = w′, we have:

∆E = l(ρ − Pw(w′)) = l(ρ − Pw(w)) < 0.

Note that ∆E is a continuous function of δ1 and δ2. Therefore,

according to Bolzano’s Theorem there exists a pair of (δ1, δ2)

which let ∆E = 0. Therefore, there exists an operation that

meets the first constraint.

Next, we prove this operation meets the second constraint,

which means the operation doesn’t decrease the throughput.

Compared with the case before we shrink, the harvested energy

that can be used in sending is
∫

δ1

p(t) dt +
∫

δ2

p(t) dt more.

Let δ = δ1 + δ2 and ρ′ = Pw(w′). Note that∫
δ1

p(t) dt +

∫
δ2

p(t) dt > w′(δ1 + δ2) = w′δ.

Let’s ignore the difference between
∫

δ1

p(t) dt +
∫

δ2

p(t) dt
and w′δ, because if we don’t decrease throughput with less

energy, we won’t decrease the throughput with more energy.

Suppose we used E energy before we shrink. We have E +
w′l = ρl + w′l, hence l = E+w′l

w′+ρ
, and therefore

B = (E + w′l)
log(1 + ρ)

w′ + ρ
. (21)

After we shrink, we have

ρ′(l − δ) = E + w′δ.

We have (w′ + ρ′)(l − δ) = E + w′δ − w′δ + w′l, hence

l − δ = E+w′l
w′+ρ′

, and therefore

B′ = (E + w′l)
log(1 + ρ′)

w′ + ρ′
. (22)

By treating ρ as a variable, the throughput is a function of ρ.

Through the analysis of Eq. (7) and the Fig. 3, we can easily

conclude that when Pw(w′) > ρ′ ≥ ρ, we have B′ ≥ B.

Therefore, this operation meets the second constraint.

The proof of expanding is the same as shrinking, which will

not be further elaborated here.

D. Proof of Theorem 6

We will use Lemma 3 (Expanding and shrinking) to prove

Theorem 6 here. Suppose there is a sending phase in the

optimal HTT schedule where sending power ρ is not Pw(w).
w is the dam height of the sending phase. According to

Lemma 3, the shrinking(expanding) doesn’t change the energy

consumption. Moreover, the shrinking(expanding) will not

decrease the throughput. Therefore, we could apply shrink-

ing(expanding) on the sending phase. And the throughput after

we apply shrinking(expanding) will be no less than that before.

Therefore, we improved the optimal HTT schedule, which is a

contradiction. Therefore, in each sending phase of the optimal

HTT schedule, the sending power should be Pw(w), where w
is the dam height of the sending phase.

E. Proof of Lemma 4

Consider a common situation shown in the Fig. 12(a).

Assume there are two sending phases. The dam heights and

sending power of these two sending phases are w1, w2 and

Pw(w1), Pw(w2). Note that w1 ̸= w2. By performing the fol-

lowing operations, we could improve the throughput without

increasing energy consumption.

First we balance the sending power of two sending phases,

which is shown in Fig. 12(b). Suppose the lengths of two

sending phases are l1 and l2. For the sake of convenience in our

proof, let ρ1 = Pw(w1), ρ2 = Pw(w2) and denote ρ3 as the

balanced sending power. The premise of the balance operation

is not to increase energy consumption, which means the areas

of sending phases are equal in Fig. 12(a) and Fig. 12(b). Thus,

ρ1l1 + ρ2l2 = ρ3(l1 + l2).
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Therefore,

ρ3 =
ρ1l1 + ρ2l2

l1 + l2
. (23)

Before we perform the balance operation, the throughput is

l1 log(1+ρ1)+ l2 log(1+ρ2). After we perform the operation,

the throughput is (l1+l2) log(1+ρ3). Because the concavity of

the power-rate function, we could use the Jensen’s inequality.

Thus, we have

l1 log(1 + ρ1) + l2 log(1 + ρ2)

l1 + l2
< log(1 +

ρ1l1 + ρ2l2
l1 + l2

).

(24)

By substituting Eq. (23) into Eq. (24), we can get

l1 log(1 + ρ1) + l2 log(1 + ρ2) < (l1 + l2) log(1 + ρ3).

(25)

Note that the left part of Eq. (25) is the throughput before the

operation and the right part is the throughput after the opera-

tion. Therefore, the balance operation improves the throughput

without increasing energy consumption.

Next, we perform shrinking and expanding operations in

two sending phases. According to the Lemma 3, both the

shrinking and expanding operations do not increase the energy

consumption and both the operations do not decrease the

throughput. Therefore, the throughput is improved without

increasing energy consumption after we perform these two

operations in the sending phases.

Note that after performing operations shown in Fig. 12(b)

and Fig. 12(c), the difference between w1 and w2 decreased.

This is because the shrinking(expanding) operation shortened

the length of the left(right) sending phase. Therefore, the

dam height of the left(right) sending phase in Fig. 12(c)

decreased(increased) compared with Fig. 12(a). Thus, the

difference between w1 and w2 decreased.

By continuously performing operations in Fig. 12(b) and

Fig. 12(c), the dam heights of the two sending phases will

eventually reach the same height. In this process, the through-

put was improved while the energy consumption was not

increased.

F. An Example of the Optimal Solution

An example of the optimal solution that satisfy

Lemma 5, 6, and Definition 6 is given in Fig. 14.

G. Proof of Theorem 7

First, we prove that the algorithm can compute the optimal

HTT schedule for the offline problem. In every iteration of the

while loop, the same problem repeats, that is starting from τ0,

find the next optimal changing point and the corresponding

dam height. We, therefore, need only to show that in the first

iteration, where τ0 = 0, the dam height w and changing time

τ are optimally set in Line 5, i.e., τopt
1 = τ and wopt

1 = w.

Here we prove it by employing proof by contradiction.

Suppose, on the contrary, the first optimal changing point

τopt
1 ̸= τ , where τ is returned by find_emptyP. We then

have the following two cases: (1) τopt
1 > τ and (2) τopt

1 < τ .

Fig. 13. If τ
opt

1
̸= τ , then there are two cases: τ

opt

1
> τ and τ

opt

1
< τ .

Case τopt
1 > τ , illustrated in Fig. 13(a). We must have

wopt
1 < w because the dam height w already makes the battery

energy-critical at τ , we have to lower the dam to make the

energy-critical at τopt
1 . Since w returned by dam_raising-

_shotg is the highest feasible dam height position w and the

battery is energy-critical at time τ for the first time, then, for

dam height lower than w, there doesn’t exist energy-critical

point. Then, it is impossible to have a single dam height that

can make the battery energy-critical at any time t > τ .

Case τopt
1 < τ , illustrated in Fig. 13(b). We must have

wopt
1 > w because the dam height w does not make the

battery energy-critical at any time t < τ , we have to raise

the dam to make the energy-critical at τopt
1 . We claim that

in the optimal dam heights, there is at least one dam height

wopt
i in (or partially in) duration [τopt

1 , τ), such that wopt
i < w.

Otherwise, optimal dam heights in [0, τ) are all greater than

w, contradicting the fact that w depletes battery at τ . This is

a contradiction to Lemma 5.

Therefore, the first optimal changing point τopt
1 = τ . In this

way, the size of the problem becomes smaller. By using the

proof again, we can show that the algorithm can compute the

optimal HTT schedule for the offline problem.

Next, we prove that the algorithm has a time complexity

of O(T 2 log(ρmax

∆ )/∆t). From Theorem 4 we could know

that the algorithm dam_raising_shotg has a time com-

plexity of O(T · log(ρmax

∆ )). In every while loop, we at

least let τ0 increase ∆t. Because the worst situation is that

we couldn’t raise the dam, therefore, τ = τ0. In the worst

situation we assign τ + ∆t to τ0, that is, let τ0 increase ∆t.
Therefore, in every while loop, we at least let τ0 increase ∆t.
As a result, the while loop will at most run T/∆t times.

In every while loop, we will run dam_raising_shotg
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Fig. 14. An example of the optimal solution for the general harvesting power p(t).

once and its time complexity is O(T · log(ρmax

∆ )). We also run

find_emptyP once and its time complexity is O(T ). There-

fore, the time complexity of each while loop is max(O(T ·
log(ρmax

∆ )), O(T )) = O(T · log(ρmax

∆ )). Note that we just

proved that the while loop will at most run T/∆t times.

Therefore, the algorithm has a time complexity of O(T/∆t ·
T · log(ρmax

∆ )) = O(T 2 log(ρmax

∆ )/∆t).
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