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Abstract— Energy harvesting is a promising technique to
address the energy hunger problem for thousands of wireless
devices. In Radio Frequency (RF) energy harvesting systems,
a wireless device first harvests energy and then transmits data
with this energy, hence the ‘harvest-then-transmit’ (HTT) prin-
ciple is widely adopted. We must carefully design the HTT
schedule, i.e., schedule the timing between harvesting and trans-
mission, and decide the data transmission power such that the
throughput can be maximized with the limited harvested energy.
Distinct from existing work, we assume energy harvested from
RF sources is time-varying, which is more practical but more
difficult to handle. We first discover a surprising result that the
optimal transmission power is independent of the transmission
time, but solely depends on the RF harvesting power, for a simple
case when the energy harvesting is stable. We then obtain an
optimal offline HTT-scheduling for the general case that allows
the RF harvesting power to vary with time. To the best of our
knowledge, it is the first optimal HTT-scheduling algorithm that
achieves maximum data throughput for time-varying RF powered
systems. Finally, an efficient online heuristic algorithm is designed
based on the offline optimality properties. Simulations show that
the proposed online algorithm has superior performance, which
achieves more than 90% of the offline maximum throughput in
most cases.

Index Terms— Wireless communication networks, algorithm
design, wireless power transfer, harvest-then-transmit, radio
frequency energy harvesting, time-varying wireless power.

I. INTRODUCTION

HE energy hunger problem is one of the major issues for
thousands of wireless devices nowadays, such as wireless
sensors, Internet of Things devices, and autonomous vehicles,
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Fig. 1. An illustration of a system that obtains energy from surrounding RF
signals and sends its data using the harvested energy.

affecting their working lifetime and thus user experiences.
Energy harvesting is a promising technique being developed
to address this problem. New research efforts are continu-
ously being made in this direction to harvest energy from
various sources. Some recent research work includes magnetic
wireless power transfer [1], [2], harvesting energy from the
radio frequency [3], [4], solar energy harvesting for electric
autonomous vehicles [5], and underwater ultrasonic wireless
power transfer [6].

For the vast majority of wireless devices deployed around
the human habitat, energy from radio frequency (RF) is one
of the important sources. Since the wireless signal not only
carries information but also carries power. Hardware for RF
power harvesting has been built to harvest energy from every-
day radio frequency signals such as TV broadcast signals [7],
WiFi signals [8] and Bluetooth signals [9]. Meanwhile, radio
wave interference has been utilized to charge multiple devices
concurrently [4]. For a long time, off-the-shelf commercial
products on RF wireless power transfer (WPT) have been
available from both Powercast [10] and WISP [11]. Fig. 1
illustrates such a system that uses harvested energy to power
its operations and transmit data.

A wireless device in an RF powered system usually first
harvests energy from RF signals and then transmits data
with the harvested energy. There are three primary reasons
that the two operations execute sequentially. Firstly, in low-
cost sensors, crucial hardware components like antennas are
shared by both the harvesting and transmission modules,
preventing simultaneous operations [13], [14]. Secondly, most
energy harvesting devices, including commercial products
from Powercast [10] and WISP [11], use supercapacitors as
energy buffers, which inherently cannot support concurrent
discharging (transmitting data) and recharging (harvesting
energy) [12]. Lastly, the limited bandwidth needs to be
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shared by the two operations. For example, Mohanti et al. [8]
propose a time-switching strategy that shares the ISM band
for WiFi data transmission and RF WPT; more recently,
Clerckx et al. [28] built a practical energy harvesting system
that divides operation time into distinct slots for either receiv-
ing power or transmitting data.

In this paper, we use ‘harvest-then-transmit’ (HTT) to
represent the principle of first harvesting energy then trans-
mission data. HTT schedule has already been widely adopted
widely [8], [12], [13], [15], [16], [17], [19], [21], [22].

A. Related Work

Time-varying is one of the most significant features for
general energy harvested from the surrounding environment,
including energy harvested from RF signal power sources [13],
[15], and from other power sources [18]. Despite tremen-
dous research efforts being spent in this direction, how the
time-varying RF power affects the wireless data throughput,
even for a simple scenario including only one transmitter and
one receiver, is not yet fully investigated.

This paper therefore studies such a fundamental HTT-
scheduling problem aiming at transmitting the maximum data
in a given time duration, assuming the wireless harvesting
power is time-varying. More specially, we wish to optimally
determine for the transmitter when to do energy harvesting
(charging), when to do data transmission (sending), and what
transmission power to use, in order to maximize data trans-
mission with the limited and dynamic harvested power.

Some of the most relevant research work includes [12],
[15], [19], [20]. Ju and Zhang [19] are among the first
group of researchers to investigate this problem, although they
assume constant harvesting power. For one transmitter one
receiver scenario, they have observed an important tradeoff
that setting a longer charging time leads to a shorter sending
time but at a higher transmission rate since more energy
was charged, while setting a shorter charging duration results
in a lower transmission rate but a longer sending duration.
They have proposed a way of finding the best time allocation
to achieve maximum data throughput. Zhao et al. [20] have
also studied the same throughput maximization problem and
proposed a numerically searching technique to solve it. Zewde
and Gursoy [15] extends such results on throughput max-
imization by further considering statistical QoS constraints.
Li et al. [12] study the network utility (or throughput) maxi-
mization problem for cooperative networks. Although Zewde
and Gursoy [15] and Li et al. [12] target advanced topics,
they both provide analysis for the simple scenario with only
one transmitter and one receiver and constant RF harvesting
power. Assuming constant RF harvesting power simplifies the
theoretical analysis of HTT and its schedule. However, how the
time-varying RF power affects the data throughput remains a
theoretically unsolved challenging problem, even for a simple
scenario that includes only one transmitter and one receiver.

Distinct from the above most relevant work [12], [15], [19],
[20] that aim at the optimal time allocation between charging
and sending, we approach the optimal solution from a quite
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different angle i.e., by targeting the optimal data transmission
power. This new approach has led us to discover a surprising
result. Our previous work [16], [17] assumes the stable power
transfer and studies a different optimization problem, i.e.,
design an HTT schedule to achieve the minimum delay for
transmitting a given set of data packets. These previous works
of ours have inspired the discovery of the basic results of this
paper.

Extensive research efforts have been devoted to various
topics in RF powered systems. One of the most notable
system-building works comes from Clerckx and his coau-
thors [28], [29]. The system they developed harvests RF
energy from the electromagnetic waves of distributed antennas.
More specifically, their system has two antennas: one is
dedicated to harvesting energy, and the other is for transmitting
data. Meanwhile, time is divided into slots, each slot being
assigned either for energy harvesting or data transmission.
Alcaraz Lopez et al. [30] surveyed the research area of RF
harvesting, categorizing the harvesting methods based on the
number of antennas used and how these antennas are organized
to harvest RF energy. Both Alcaraz Lopez et al. [31] and
Valentini et al. [32] allow energy to accumulate over time
beyond a single ‘harvest-and-transmit’ round, while the former
focuses on a finite battery and finite block length, and the
latter studies the problem when the batteries are affected by
aging. Huang et al. [33] studied a more general problem of
one-to-many RF power transfer, investigating how to deter-
mine the harvest-transmit time ratio and transmission power.
Choi et al. [34] allow random access to the wireless broadcast
medium. They focus on the harvest-or-access problem for each
time slot. Karadag et al. [35] explore how to control power
and allocate harvest-transmit time, by proving the NP-hardness
and then proposing heuristic algorithms.

The time-varying power harvested from harvesting is one
of the most important characteristics and is assumed by some
recent research work [18]. Qureshi and Tekin [18] design
transmission rate selection online algorithm for cognitive
radio networks assuming the dynamic power from an energy
harvesting source. Kim et al. [23] provides a power allocation
policy based on reinforcement learning, assuming random
energy arrival and time-varying channels. Zhang et al. [24]
design a general framework to solve the public goods problem
for the WPT network, considering the time-varying channel
condition.

While general energy harvesting from the surrounding envi-
ronment has been discussed, RF Wireless Power Transfer
(WPT) proves to be a more reliable solution for the vast
majority of wireless devices deployed in human habitats.

B. Motivation and Contributions

From the above discussion, we are motivated by the need
to design an efficient HTT-scheduling to achieve maximum
data throughput for time-varying RF powered systems. The
motivations for our work are listed below.

o There is a lack of optimal results for this fundamental
problem, despite the tremendous research efforts that
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have been expended in this direction. Most related work
assumes that the wireless power transfer is stable and
static. Whether there exists an optimal solution for
the fundamental throughput maximization problem for
time-varying RF powered systems in a simple scenario
with only one transmitter and one receiver is still open.

o We are encouraged by our previous work. Although our
previous work [16], [17] studies a different problem and
assumes constant energy harvesting from RF power, we
do get inspired by handling the tradeoff of charging and
sending. We attack the new optimization problem with a
quite different approach, which has led us to discover a
surprising result that no existing work has achieved.

In this paper, we attempt to solve the theoretically challeng-

ing optimization problem.

o« We establish a set of optimality properties for cases
with stable energy harvesting, which characterize the
necessary conditions for any optimal schedule.

o Our study reveals the surprising discovery that the opti-
mal transmission power is independent of the transmis-
sion time but depends solely on the RF harvesting power.
This discovery offers valuable insights for addressing
related problems in the field.

o Additionally, we introduce an optimal offline
HTT-scheduling for the general case that allows RF
power to vary with time. To the best of our knowledge,
it is the first optimal HTT-scheduling algorithm that
achieves maximum data throughput for time-varying RF
powered systems.

e We also present the design of an online heuristic
algorithm aimed at maximizing throughput in RF power
harvesting systems. Its superior performance compared
with the optimal offline algorithm is demonstrated by
simulations.

The remainder of this paper is organized as follows.
In Section II, we formally define the system model and
the optimization problem. A set of optimality properties for
the HTT-scheduling is obtained and presented in Section III.
An optimal scheduling algorithm for the defined problem is
presented in Section IV and Section V. The online schedul-
ing problem is investigated in Section VI, where an online
algorithm is presented. Simulation results are also discussed
in the same Section. Section VII concludes this paper. A few
proofs of the algorithm have been omitted here because
of space limitations, but they are available in an extended
version [36].

II. PROBLEM FORMULATION
A. System Model

We consider a simple communication channel consisting
of a data receiver and a wireless-powered data transmitter.
The transmitter transmits data to the receiver over an AWGN
wireless communication channel, which is widely adopted
in the literatures [13], [15], and [16]. An outside power
source, such as TV/WiFi broadcasting signal, cellular signal,
or power beacon, is assumed to provide wireless power to the
transmitter. Generally, the energy harvested from the outside
power source is varying in time. The RF harvesting power is
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Fig. 2. A wireless transmitter harvests energy in the charging phases
and transmits data in the sending phases. The charging power p(¢) is a
time-varying function. The phase switching time ¢; and the sending power
p(t) are to be determined to maximize throughput. Obviously, the remaining
energy increases in the charging phases and decreases in the sending phases.

therefore a time-varying function, denoted as p(t),0 <t < T,
where T is the length of the duration in consideration.

The transmitter has to first harvest energy before it can
transmit data, so the ‘harvest-then-transmit’ principle is used.
We therefore define a two-phase cycle that consists of a
charging phase and a sending phase. In the charging phase,
the transmitter harvests the wireless power, and in the sending
phase, it sends data to the receiver. The transmitter repeatedly
and continuously switches between the two phases in the time
interval [0, T']. Suppose that there are m cycles in this interval.
Thus, there are 2m phases and 2m switches, which occur at
time instances {t1,ta,...,tam}, 0 < t; < ... < tom. The 2m
phases are labeled from 1 to 2m, with phase ¢ starting from
time t;_; and ends at ¢;(¢ = 1,2,...,2m). The lengths of
these phases are to be determined by our algorithm. However,
it is assumed that there is a lower bound At for the length of
any charging phase, which is imposed by the hardware.

Note that we assume ¢y = 0 and the battery has an initial
energy E;,;;. Obviously, phase 2¢ — 1 is a charging phase, and
phase 27 is a sending phase, : = 1,2,...,m.

In sending phases, the transmission power is denoted as
p(t), which is subject to the power constraint of Eq. (1), where
Pmaz 18 the maximum transmission power imposed by the
hardware.

0 < p(t) < Prmaa,0 <t <T. (1)

At time ¢, the transmitter could choose one of the actions
below:

1) Consume the energy of the battery at a given power p(t)

and transmit data.

2) Charge the battery with power p(t). The minimum
charging phase length is At, which is imposed by the
hardware.

Fig. 2 illustrates the relations among the notations of
the charging phase, the sending phase, the harvesting power
(charging power), the transmission power (sending power), and
the remaining energy.

B. Problem Formulation

Let H (t) be the total energy charged into the battery before
time ¢, which can be calculated as follows.

k=1 oty 4 min{t,tar_1}
Ho =Y [ sars [ ()t
i=1 Yt2i-2 tog—2

where k satisfies tor_o < t < top.
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Let E(t) be the total energy consumed before time ¢, which
can be calculated as follows.

B(t) :il /tjilp(t) di + /

min{t,tor_1}

min{t,tar }

p(t) dt,

where k satisfies top_o < t < top.
Let R(t) be the remaining energy in the battery at time ¢,

R(t) = Einie + H(t) — E(2).
We ensure that the remaining energy cannot be negative:
R(t) >0, Vtel0,T]. )

Because current technology cannot fully charge the battery
wirelessly in a short time, the battery capacity is assumed
to be large enough and can never be overcharged. Therefore,
the battery capacity does not affect the performance of any
schedule.

During the sending phase, the received signal at time ¢ from
the transmitter is given as

Ut = htX+Nt

where N; ~ CN(0,1) is the circularly-symmetric complex
Gaussian noise at the AP with unit variance, and h; denotes
the channel fading coefficient. Accordingly, the transmission
power p(t) at time ¢ is tightly related to the transmission rate
r(t) through the power-rate function of Eq. (3), as commonly
assumed [13], [15], [16]

r(t) =log(1 + [h]* p(t)). 3)

Note that in some other related works, it is also common to
assume r(t) = 3 log(1+ |he|” p(t)), and our proposed method
is easy to be extended to these cases. In fact, as long as
r”(t) < 0, our main results of this paper hold, more details
can be found in the next section. In this paper, we assume
|hi] = 1. As a consequence, the total amount of data trans-
mitted during the entire time interval [0, 7] can be calculated

by the following equation

B= Z/ log(1 + p(t)) dt.
=1

t2i—1

“4)

Since we are maximizing the throughput over a fixed period
of time, we can simplify the problem by considering the total
amount of data transmitted as the throughput. Therefore, B in
Eq. (4) represents the data throughput.

Definition 1 (The HTT-scheduling problem): Let p(t),t €
[0,T] be the harvesting power, the HTT-scheduling problem
is to determine the phase switching points t;,i = 1,2,...,2m
and the transmission power p(t) in sending phases, so that
the data throughput B in Eq. (4) is maximized while sat-
isfying the power constraint Eq. (1) and remaining energy
constraint Eq. (2).

The HTT-scheduling problem of Definition 1 is called the
offline case if the function p(¢),0 < ¢t < T is completely
known before scheduling. It is called the online problem if
p(t) is not known until time ¢ reaches the start time of a two-
phase cycle.

Unless otherwise specified, we use watt as the unit for
power, joule for energy, second for time, and KB for
throughput.
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III. THE wopt POWER

In this section, we introduce the notion of wopt power,
which will play a key role in designing an optimal HTT
schedule. We use a simplified HTT-scheduling problem to
explain this notion.

Definition 2 (Basic HTT-scheduling problem): An ~ HTT-
scheduling problem with the following 2 assumptions is called
basic HTT-scheduling problem. 1) The harvesting power p(t)
remains constant for the entire duration of [0,T); and
2) there is no limit on the maximum transmission
power Pmax-

It is well-known that [12], [15], and [19] if the wireless
transmitter does not harvest any energy but solely relies on the
initial energy E;,;; for the entire duration of 7', then, because
of the concave property of the power-rate function Eq. (3), the
optimal transmission power is
Einit

T )
which depends on both the initial energy and the length of the
duration in consideration.

Now we consider the wireless device has another option:
It can harvest RF power to charge the battery. In this case,
if there are multiple charging phases, we can always move a
later charging operation to an earlier time. Therefore, for this
case, a single charging phase followed by a single sending
phase will produce an optimal solution.

Let us discuss how to determine the switching point between
these two phases. Suppose that the phase-switching point
is t1. Because a single constant transmission power p should
be used in the sending phase, we obtain the following
equation.

p= )]

Einit + pt1 = p(T — t1).
Therefore,

- pT — Eingt

tq
p+p

(6)
Since the data transmission rate is log(1 + p) at transmission
power p, the total throughput B can be calculated by B =
(T — t1)log(1 + p). Plugging in the expression (6) for ¢,
we obtain the following function (7) for B. Clearly, it is a
function of variable p.

log(1 + p)

B(p) = (T + Ein;
() = ( )

(7

To help understand the function B(p), we illustrate its shape
in Fig. 3(a) when p = 10, E;,; = 7.6 and T" = 8. It can be
seen that there is a maximum value of B(p) for p € [0, 30].
To analytically locate the maximum value of function B(p),
we calculate its first and second order of derivatives as shown
below.

B'(p) = (pT + Eimt)(M)/

p+p
pT + Einit p—1 1

Authorized licensed use limited to: Southeast University. Downloaded on January 14,2026 at 03:14:28 UTC from IEEE Xplore. Restrictions apply.



3144

— p=Pu(p) 7’

Fig. 3. (a) The shape of B(p) in Eq. (7) when p = 10, E;p;t = 7.6 and
T = 8, which is maximized at p,, ~ 7.2 and the phase switching time in
Eq. (6) is t1 = 2.9. (b) The curve of function p = Py, (p) when pmas = 7.

Because (pT'+ Einit)/((p+p)?) > 0, we define function g(p)
as
PT + Einit

(p+p)?
_(1+E)i log(1 + p)
T T e T BT

Obviously, for any given p, g(p) and B’(p) share the same
sign and zero point. Because

g(p) = B'(p)/

()= s
I = A )22 (1+p)n2
ptp

e S— < s

(14 p)%2In2

g(p) monotonically decreases. Hence B(p) is concave and its
maximum value can be found at point p,,, such that g(p,,) =
0. By setting g(p.,) = 0 we have the following derivations:

p—1_1
1 — =1 1 w /s
(4-1+prn2 0g(1 + puw)
-1
EXH1+f? ) =1+ pu,
p—1 (p—l)_p—l
14 pow 1+p,. e’
p—1 p—1
w = ,
( c ) 15

where function W(z) is called the Lambert W function [25],
which has the following property,

W(2)EXPW(z)) = z.
Therefore, we have

~1
:ﬁ%55—1. (8)

Fig. 3(a) shows an example of the function B(p). Since

N . _ pT—Eini _ 7.2x8-7.6 _
pw /= 7.2 for this example, ¢; = e T Tlorrz 2.9.

From Eq. (6), we observe that, if pT' < FE;,, then
t; should be O or negative, which means no charging is
needed. We state the main result in the following lemma,
whose correctness follows directly from the above discussion.

Lemma 1: If Eipniy < pw, then the optimal solution for
the basic problem in Definition 2 consists of a charging phase
and a sending phase. The phase transmission power is p = py,

Pw
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determined by Eq. (8) and switching point is t1 determined by
Eq. (6). If Einit > pwl, then no charging phase is needed,
and the transmission power is determined by Eq. (5).

We further have the following important theorem, despite
the optimal charging/sending phase switching point, namely
t1 from Eq. (6), depends on F;,;+, p and T

Theorem 1: The optimal sending power p,, is independent
of Einit and T, and depends only on the harvesting power p
when Eipi < po,T.

This theorem is quite surprising. It plays a key role in
the optimal solutions for the general HTT-scheduling problem
defined in Definition 1.

Some previous work in the literatures [15] and [19] also
studied the same basic problem, but they all failed to discover
Theorem 1 because they focused on finding the optimal phase
length ¢1, while we, instead, focus on computing the optimal
transmission power p. In a recent attempt by Zewde and
Gursoy [15], the optimal harvesting time from Eq. (25) in [15],

6w(?;1)+1 . 1

; €))

o
B eV

is a specially case of our optimal phase switching time ¢; from
Eq. (6) by setting p = py,

_p=1 —E. .
_ pr - Einit _ (W(pffl) 1)T E””t
b= = (0
p Pw p W(pTTl)
Note that eV(*e)+1 = _2=1_ by the definition of the

p—1
Lambert W function. When 7' = 1 and FE;ni: = 0, our result
Eq. (10) can be reduced to their result Eq. (9). However,
we instead, focus on the optimal transmission power, which
leads to the surprising new discovery in Theorem 1. Our
discovery reveals an essential property of RF powered data
transmission that has never been disclosed before.

We now introduce the wopt power in preparation for the
general case, where the wireless power p may change from
time to time.

Definition 3 (wopt power Py (p)): For any given harvest-
ing power p, the wopt power P, (p) is defined as follows.

o p—1
P, (p) mln{W(%)
where ppmar IS the maximum available transmission power
which is imposed by the hardware.

The function P, (p) is the most important concept through-
out this paper. Fig. 3(b) shows the curve of this function for
the range of p € (0,12) and pya; = 7 to give the reader an
intuitive idea of this function. For any given wopt power p
which is less than p,,q,, We can compute its inverse function
to obtain the harvesting power p = P, 1(p).

_17pma:1:}7 (11)

IV. AN OPTIMAL OFFLINE SOLUTION FOR
DECREASING HARVESTING POWER

In this section and in the following section, we will develop
an optimal offline algorithm for the HTT-scheduling problem
defined in Definition 1, which is the basis of the algorithm
for the general case investigated in the next section. In this
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section, we solve a simpler case where the harvesting power
function p(t) is assumed to be monotonically decreasing.

Before we design the algorithm that computes the optimal
solution, we first want to see what the optimal solution should
be like. We therefore present the following theorems on the
optimal solution.

Theorem 2: For HTT-scheduling problem, when the har-
vesting power p(t) is monotonically decreasing, there exists an
optimal solution in which a power level w exists such that (1)
in any charging phase we have p(t) > w, (2) in any sending
phase we have p(t) < w,0 <t < T. The level w is called the
dam height.

Theorem 3: In the optimal solution, when the harvest power
p(t) is monotonically decreasing, the sending power of the
sending phase should be P,,(w), where w is the dam height.

Theorem 2 and 3 are special cases of Theorem 5 and 6,
respectively. Due to space constraints, we provide the full
proofs in the extended version of this paper [36].

From Theorem 2 and Theorem 3, we have known that
there is an important dam height, which not only distinguishes
charging phases from sending phases but also determines the
sending power. Therefore, once the optimal dam height is
determined, the HTT schedule is determined.

Definition 4 (Dam w HTT-schedule): Given the harvesting
power p(t) and the initial battery energy E;n;i, the following
scheduling is called the Dam w HTT-schedule.

o Any charging phase |a,b] satisfies p(t) > w,t € [a,b].

o Any sending phase [c,d] satisfies p(t) < w,t € [c,d], and

its sending power is P, (w).

Note that, inside either phase, we may have p(¢) = w. This
could occur especially when p(¢) is a constant function.

Now the only question is how to find the optimal dam height
Wopt such that the Dam w,,; HTT-schedule maximizes data
throughput before 7.

We start from the following lemma, which is obviously true
with no need of proof.

Lemma 2: In a Dam w HTT-schedule, when the dam height
w increases, the energy used in sending increases, while
charged energy decreases as charging phases shrink, hence
the remaining energy R(T') reduces monotonically.

Since in the optimal HTT-schedule, there must be no
remaining energy in the battery at the ending time 7', our
strategy is to search the optimal dam height w,,,; such that in
the Dam w,y,; HTT-schedule, R(T") = 0.

We hence design the dam raising system to find the
optimal dam height. Such a system is built upon the time-
power diagram, as presented in Fig. 4. Note that in this
diagram, we introduce a virtual phase with a virtual harvesting
power p(t) = Wiaz, Where Wpae = Pl;l(pmax)’ t €
[—Einit/Wmaz,0]. This virtual phase is to pre-charge the
battery to E;p¢.

We now introduce the dam raising system on the time-power
diagram in Fig. 4. The curve of p(t) is treated as a mountain.
Although in the current decreasing harvesting power case,
there is only one downslope, our system is intended for
general p(t) where both downslopes and upslopes exist, i.e.,
there are hills and valleys. In this mountain area, we want to
build a dam to hold water (in the valley and underground).

3145

10 - Dry (Charging) Zone
=== Water (Sending) Zone | {200

—— Remaining Energy
8 160
dam height w

6 AN water table (sending power) Py(w)| 120

Wnax

-4 0 5 10 15 20

AP > E

1

(b) Dam raising.

Fig. 4. An example of the dam raising system and how the dam is raised.
(a) The dam raising system is introduced on the time-power diagram, where
the curve of p(t) is treated as a mountain (especially for the general p(t)).
In this mountain area, a dam is built to hold water. A dam with height w can
hold the water table with height P, (w) (see Section III). The dam height
w divides the mountain area into hills and valleys. Only the valley and its
underground hold water, no water beneath the surfaces of the hill. The area
right beneath the surface of the hill is called the dry zone (charging zone),
whose area is actually the amount of energy charged into the battery; the
area right beneath the water table is called the water zone (sending zone)
whose area is actually the energy consumed for sending data. (b) In the dam
raising system, the dam height w is raised slowly to find its optimal position.
It starts with w = 0 and stops raising as soon as the dry zone area equals
the water zone area. The green curve indicates the remaining energy in the
battery, which increases during the charging phase and decreases during the
sending phase.

Assume a dam with height w can hold the water table with
height P, (w). The dam height w divides the mountain area
into hills and valleys. Only the valley and valley underground
hold water, no water beneath the surface of the hill. The area
right beneath the surface of the hill is called dry zone; the
area right beneath the water table is called the water zone.
The dam has the maximum height P, ! (p,4,) and the water
table has the maximum height p,,,4,.. Hence, the virtual phase
is guaranteed to be a charging phase in our system.

Since an area on the time-power diagram represents an
amount of energy, the dry zone area corresponds to the energy
harvested into the battery, while the water zone area corre-
sponds to the energy consumed in sending data. Therefore,
the difference between the two zone areas is the remaining
energy R(T'). In Fig. 4, the green curve with its corresponding
right y-axis indicates the remaining energy in the battery,
which increases during the charging phase and decreases
during the sending phase.

The core of the dam raising system is to raise the dam height
from w = 0, and stop as soon as the dry zone area equals the
water zone area. Then the optimal dam height and the optimal
water table are found. At the very beginning, the entire area
is a dry zone with no water zone. As the dam height is raised,
the dry zone shrinks horizontally, while the water zone grows
both horizontally and vertically. Hence, a unique dam height
can be found that equals the two zone areas. The dam raising
stops at this height.

For any Dam w HTT-schedule, it is easy to compute the
remaining energy R(t) at any time ¢ € [0,7]. And R(¢) is
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illustrated by the green remaining energy curve on the dia-
gram in Fig. 4. Let a procedure is_shortage(s,te, Ey, w)
checks whether any part of the remaining energy curve in
duration [ts,t.] goes below 0 which means energy shortage
and infeasible schedule, where Ej is the initial energy for
[ts,tc], and w is the dam height. The procedure returns true
if there is any shortage, false if the schedule is feasible.
Obviously, the time complexity of this check is O(|t, — t5).
Hence, we want to find the highest dam height w such that
is_shortage(0,T, F;nt,w) returns false.

In the formal algorithm, the process of dam raising can
be efficiently speeded up by bisection searching. Algorithm
dam_raising_shotg provides formal details.

A simple call to dam_raising_shotg(0,T, E;,) will
return the optimal dam height.

Theorem 4: Algorithm dam_raising_shotg(0,T, E;pnit)
computes the optimal HTT schedule, and time complexity of
the algorithm is O(T' - log(=5e=)), where A is the desired
accuracy.

Proof: See Appendix A. (]

V. THE OPTIMAL OFFLINE SOLUTION FOR
GENERAL HARVESTING POWER

The section focuses on the general harvesting power case
and extends results for the special case of the monotonically
decreasing harvesting power. Before we design the algorithm
that computes the optimal solution, we first present the fol-
lowing theorems on the optimal solution. It is not hard to see
that the following theorems are similar to those in the previous
section.

Theorem 5: For the general HTT-scheduling problem,
when the harvesting power p(t) is a general function, in the
optimal schedule, there exists a set of time T;, and the power
level w; for interval [1;_1,7;), in which (1) for any charging
phase, we have p(t) > w;, (2) for any sending phase,
we have p(t) < w;,0 <t < T,i =1,2,...,n, unless p(t)
monotonically increases in [1;_1,7;|. The power level w; is
called the dam heights.

Proof: See Appendix B. ]

Lemma 3 (Expanding and shrinking): Suppose w and p
are the dam height and sending power in a sending phase.
If P,(w) < p (Py(w) > p) satisfies, then there exists an
operation that expands (shrinks) a sending phase via including

Algorithm 1 dam_raising_shotg(ts, te, Fo)

1 Wiower = 0;

2 Wyupper = Pmazs

3 while Wypper — Wiower > A do

4 W = W,

if is_shortage(0,T, E;,i;, w)=false then
‘ Wiower = W

else
‘ Wypper = W

end

o e N N W»n

10 end
1 return w

—

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 11, NOVEMBER 2024

Dry (Charging) Zone
12 === Water (Sending) Zone | |126
— Remaining Energy
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Fig. 5. The dam is raised in the dam raising system for general harvesting
power. (a) For general p(t), there are more than one dry zone and water zones.
However, all underground water is connected, so they share the same water
table in all valleys. (b) When the dam is raised, the water table rises too. The
dam raising will create new valleys and open new water zones. As the dam
height w grows larger, the green remaining energy curve increases less but
decreases in a larger slope, as a result, this curve generally becomes lower
in position. We stop raising once the green curve touches the x-axis because
that means the battery is energy-critical at the touch point.

(excluding) a small duration at both ends while meeting the
following constraints.

o The operation doesn’t change the energy consumption.
o The operation doesn’t decrease the throughput.

Proof: See Appendix C. (]
Theorem 6: In any sending phase of the optimal HTT
schedule, the sending power is Py (w), where w is the dam
height of the sending phase.
Proof: See Appendix. D ]
Due to the similarity between these theorems and the
theorems in the previous section, dam raising system can be
conveniently extended to the general p(¢) function. Recall that
the dam height is raised slowly (so as the water table), and
the dam height stops rising once the dry zone area equals
the water zone area, which indicates the harvesting energy
is used up in sending data. The dam height and water table
are raised exactly the same way for the general p(¢) function.
One of the differences is that there may be more than one
dry zone and more than one water zone. The dam height will
meet each valley in order when it rises. When the dam height
is raised, the total dry zone area grows, but the total water
zone area shrinks, e.g., Lemma 2 still holds. We stop when
the two areas are equal. We define such a revised algorithm
dam_raising_general. This algorithm is executed on the
part of the p(t) from Fig. 2, and the results are given in Fig. 5.
However, the biggest difference for the general p(¢) function
is that it is not always possible that one dam height can make
the dry zone area be equal to the water zone area. If we
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The dam raising system may generate multiple dam heights. (a) The dam height is slowly raised to the highest position that is feasible. In such a

position, there must be an energy-critical point so that further raising will cause an energy shortage. The dam height before such a point is optimal. (b) Once
the battery is energy-critical (¢4 at (a)), we charge the battery for At time. Starting at this point, the same problem repeats. In this new problem, the remaining
energy curve will not touch the x-axis until the dam continues to be raised above p(t4). This is called the fast switching cycle. (c) A number of adjacent fast
switching cycles follow, and they are called the fast switching period. (d) When the dam continues to be raised above p(tg), the first energy-critical point
that appears is tenq. Therefore, the fast switching period ended. (e) Full view of the fast switching period. The fast switching period begins at ¢4 and ends
at te, and there are 2 fast switching cycles in the fast switching period: t4 ~ t5 and t5 ~ t6.

consider a longer p(t) function from Fig. 2, then the problem
arises. As in Fig. 6(a), since the dry zone in [t4,t,] is larger
than the following water zone, the total area of the dry zone
is larger than that of the water zone. We may want to raise the
dam to enlarge the charging zone and shrink the sending zone.
However, the raise is impossible, because we already have
the two zones equal before time ¢4, i.e., the green remaining
energy curve touches the x-axis at time ¢4. Note that although
R(t4) = 0, there is still a certain amount of energy at time ¢4 to
keep the device functional which is not considered in the dam
raising system design. So there is no single dam height for
the entire duration [0, T'] such that the two zones before T are
equal.

In conclusion, throughout the entire duration [0,77], the
optimal dam height does not necessarily stay unchanged.
Instead, it may change multiple times. Assume it changes at
time t = 75,2 = 1,2,--- ,n, and stays constant in all adjacent
cycles in [r;_1,7;) at w;. Now, the problem becomes how to
find all the dam height w; and the dam height changing points
Tt =1,2,--- n.

Before we go any further with the algorithm, we first
investigate some optimality properties of the optimal dam
height.

Lemma 4: Any two distinct dam heights from two disjoint
durations can be equalized to transmit more data in these two
durations, unless infeasible solution results.

Proof: See Appendix E. (]

Lemma 5: The optimal dam height increases only.

Lemma 6: The optimal dam height increases at energy-
critical points.

The proofs of Lemma 5 and Lemma 6 can be obtained by
applying Lemma 4. Due to space limitations, the details are
provided in the extended version of this paper [36].

The battery must be charged once it is energy-critical, the
following definitions state what is the energy-critical point and
how it is charged in the optimal solution.

Definition 5 (The energy-critical point): If at time point t
the energy in the battery available for transmitting the
data is 0, then the time point t is an energy-critical
point.

Note that, at an energy-critical point, there is only a little
energy that keeps the device functional remains and there’s no
energy available for transmitting the data.

Immediately following an optimal energy-critical point,
there must be a charging phase with length at least length At,
where At is the minimum time required for a device to stay
harvesting which is imposed by the hardware.

Definition 6 (The fast switching cycle and fast switching
period): A cycle is called the fast switching cycle if its charging
phase is with length At, and the sending phase uses up all
the energy in the battery. Adjacent fast switching cycles are
called a fast switching period.

Note that an example of the optimal solution that satisfies all
the above Lemma 5, 6 and Definition 6 is given in Appendix F.

We are now ready to present the algorithm. The high level
idea is quite simple, we want to find the first dam height
changing point for the optimal dam height and after such
a point, the same problem repeats. According to Lemma 6,
1) at such a point, the battery is energy-critical, and 2) before
such a point, there is a single dam height, and 3) after such
a point, the dam height increases. Hence, we find the largest
dam height w for the entire duration that is feasible with an
energy-critical point. We will prove later that such a point
is the first optimal dam height changing point, and the dam
height w is also optimal before such a point.

We can call the previously introduced dam_raising-
_shotg to directly return such a dam height w. Let the
procedure of finding the energy-critical point for w be
find_emptyP(ts, te, Eo, w), where [ts, t.] is the duration in
consideration, FEj is the initial energy for such duration, and
w is the given dam height. The procedure returns the first
energy-critical point 7 if it exists. Starting from 7, we charge
the battery for At time, and charge t:;At p(t) dt energy into
the battery. The point 7+ At will be treated as the new starting
point for the next iteration.

Algorithm Varying_Source_WPT computes all the
changing points and the dam heights.

Theorem 7: The algorithm Varying Source_WPT com-
putes the optimal schedule for the offline problem, and the time
complexity of the algorithm is O(T? log(25e=)/At).
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Algorithm 2 Varying_Source_WPT
1 790 =0, By = Einit;
2 while 79 < T do
3 w=dam_raising_shotg(ry, T, Ep);
T=find_emptyP(7ry, T, Ey, w);
Set dam height w in |19, 7];
70 =17+ At, Eg = [T p(t) at;
end

Proof: See Appendix G. (]

An example of the execution of Algorithm Varying-—
_Source_WPT is illustrated in Fig. 6. By line 3, we slowly
raise the dam height w and the corresponding water
table P, (w).

As the dam height w grows larger, the green remaining
energy curve increases less but decreases in a larger slope,
as a result, this curve generally becomes lower in position.
Once the dam height w is raised to a height that causes the
curve to touch the x-axis, we stop, because that means the
battery is energy-critical at the touch point. Line 3 returns this
height w and line 4 returns the time of the touch point 7.
We have proved such dam height is optimal. Note that, since
the battery is energy-critical at 7, according to Definition 6,
we set interval [T, T+ At] to charge the battery, and the charged
energy Ey = t:;At p(t) dt. In Fig. 6(b), the remaining energy
curve will not touch the x-axis until the dam height continues
to rise above P(t4). Since the previous charging phase length
At is small, the initial energy Fy = t:;m p(t) dt is small,
so with a small sending phase, the curve touches x-axis, and
we stop. This is called the fast switching cycle, obviously,
there will be fast switches in this period among harvesting
and transmitting phases. The fast switching period may last
for a number of more cycles, like in Fig. 6(c). In Fig. 6(d),
when the dam continues to be raised above p(tg), the first
energy-critical point that appears is te,q. Therefore, the fast
switching period ended. Fig. 6(d) gives a full view of the fast
switching period. The fast switching period starts from ¢4 and
ends at tg. There are 2 fast switching cycles in the period:
lf4 ~ lf5 and ts ~ tg.

A more complicated example with three dam heights and
two fast switching periods is given in Appendix F.

VI. ONLINE ALGORITHM AND SIMULATIONS

In this section, we study the online HTT-scheduling prob-
lem, where the phase switching points and the transmission
power are determined based on the past and current harvesting
power, i.e., any p(t) is not known until time ¢. We propose
a heuristic algorithm, namely dam guided online algorithm,
which is based on the optimal properties obtained from the
offline problem. We then provide some basic theoretical anal-
ysis of this online algorithm. Finally, performance evaluation is
conducted by comparisons with the optimal offline solutions.

A. Online Algorithm

The core idea of dam guided online algorithm is to
use the history average harvesting power to anticipate any
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TABLE I
SUMMARY OF ONLINE SETTINGS TO [ AND lo
__ P 1 _ p _ P <1
i Pa@ 2 | 3<57Pam <! | pPam =3
L 0 At PHPw(P) =P Ay
D
p
b2 At ORI At

unknown further harvesting power and compute the next
charging-sending cycle based on the current harvesting power.
Meanwhile, we do not want the next cycle to last too long,
because harvesting power is time-varying and we have no
future information. We want the cycle to be as short as
possible.

More specifically, assume at the current time ¢, the charging
power is p and the battery energy is E,, while the history
average charging power is p. Suppose [, l2, and p are the
lengths of the charging phase, sending phase, and the sending
power respectively, which are to be determined by the online
algorithm.

A total of (I; + l2)p energy is expected to be harvested on
average in the next cycle if both phases are used for charging.
If we set the sending power to be P, (p) in the second phase,
then compared with the both phase charging case, this sending
phase not only costs ls P, (p) energy in sending data, but also
costs lop energy less charged into the battery. Therefore, the
remaining energy is (I1 + l2)p — (loPy(p) + l2p) = L1p —
lo Py, (D), i.e., the sum of both cost should be deducted.

As long as l; and [y are small enough, we can treat
harvesting power as a constant, which is p. Then, the sending
phase with length s costs lo P, (p) + lop energy loss, includ-
ing lo P, (p) energy consumed and lop energy less charged.
We want the energy loss to equal to the expected energy
harvesting, e.g., (11 +12)p = l2(P,(p) +p) because the energy
charged and energy consumed should equal in a long run.
Therefore, [; and [y satisfies

la _ p
li+ls p+Pu(p)

12)

Obviously, only if ﬁ?(ﬁ) < 1, then [; > 0. Hence, we set
_ _ p 1 !

ll — 0 and l2 = At when m 2 1. When b < l1"t2‘12 < 1,
l; is smaller than 5, we hence set t; = At and compute

ly accordingly, Iy = #mAt. When llljlz < 5, g is

smaller, hence we set o = At and |; = P+Pu(B)=P At These
settings to [y and lo are summarized in Table I.

The Algorithm dam_guided_online presents
detailed pseudo code.

the

B. The Basic Theoretical Analysis

The general idea of our basic theoretical analysis is, we take
two general intervals and analysis the throughput and energy
usage within both intervals. Assume the time-varying harvest-
ing power function p(t),0 < ¢ < T has the average power at p,
then the two taken intervals must also average to p, otherwise,
they are not general enough. Let them be called interval x and
interval y, both with length L. If « and y both have harvesting
powers equal to p, then it is quite straightforward to check
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Algorithm 3 dam_guided_online(E,, t, p)

1 Update the average harvesting power p;
if 2-02®) <1 then

3 ll = O

4 12 = At;

5 elseifl<%§’(ﬁ)§2then
6 I = At;

7| b= mr At

8 else if 2 < %ﬁ”(m then

o | 1y = EEPuGIE Ay

10 los = At;

11 end

1 if E,. +l1ip — 5P, (p) <0 then
B | lh=0;

14 end

15 Set charging phase [¢,t 4 11);
16 Set sending phase [t + I1,¢+ {1 + l2), and sending power
Py (p);

that the proposed online algorithm produces a solution with
throughput equal to the offline optimal solution.

We therefore focus on the cases when harvesting power in
the two intervals varies. Assume p(t) is bounded by Py <
p(t) < Pmaz,0 < ¢ < T, and Pmin = (1 - V)p and
Pmaz = (147)p, where ~ represents the deviation of variation.
We study the case where the two taken intervals have the
largest variation deviation of p(t) because the throughput and
energy usage are affected the most. Without loss of generality,
we assume the harvesting power p = (1 — )P in interval z
and p = (14~)p in interval y, and z is before y. We will show
next the throughput and energy usage differences between a
simple offline solution and the online solution by the proposed
online algorithm.

Assume in an offline solution, all energy harvested is used
up in x and y, respectively, that is

E°Tf = .

Then, according to the constant harvesting power analysis in
Section III and Eq. (7), we have the throughput for this offline
solution as follows,

oy log(1+ Pul(1 = )p)
e s -y N (R )
s o R0 )

(1+7)p+ Pu((1+7)p)

: : on _ log(1+Puw(p)) _
Since function B"(p) = pL== 15~ ()~ 1s a concave func

tion, so according to Jensen’s inequality, we have

log(1 + P (p))
p+Pu(p)
We now study the throughput and energy usage of the online

solution produced by the proposed online algorithm. Since

the online algorithm produces cycles with very small lengths,
we first investigate the length percentage of both phases.

Since the sending phase length percentage has already been

Boff < opL (14)
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presented in Eq. (12), the charging phase length percentage is

therefore h:{b =1- oF If Gk Therefore, we have
l$1 ﬁ
—=1- = —, dpy1+lpo=1L
[ A—p+Pup)
lyl 25
— =1- - —, L+l =1L
Ly + 12 (147)p + Pu(p) vl vz
Therefore,
D
lpo = = —L
T 0=+ Pulp)
D
ly2 = = —L
7 (1 +9)p + Pu(p)

The throughput of the solution by our online algorithm is the
sum of all data sent in every sending phase in both intervals x
and interval y.

BO" — | 210g(1 + P ( )) + lyg log( + Pw(ﬁ))

_ p o
=Tt Pagp) BT P
p

AT Pu®

Since function B°/f(p) = ﬁL%
function, so

Llog(1+ Py, (D).

is a concave

log(1 + Py (p))

B > 25— A
P+ Pu(p)

5)

Therefore,

B°" > BofT, (16)

The energy harvested into the system by our online
algorithm in charging phases of both = and y is

p )
A= p+ P PP

P
(1+)p + Puw(p) )
(1= - 1+ +755)

— _D
(1 '7) (1+’7)pw(ﬁ) +1
The energy consumed in the sending phases of both intervals
is

B = (1~

+(1— JL(1+v)p

TP )

= Lﬁ( D
P 1

).

Fowe =11 v)pi_Pw DR
+<r+v>pTP<>LP'““ 1
:Lﬁ((l—y)erl [y )
So,
Fon — pon _ pon _ () LRSS 0]

(1 -5k +1
TR Y RS
(1+v)—Pw(f,) +1

In conclusion, our online algorithm produces a solution that
delivers more data than a simple offline solution using the

)=0=E°7,
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The achieved throughput by the online algorithm to the offline optimal throughput. The default setting is total time 7" = 150s, the mean harvesting

power p = 0.22W, and the harvesting power deviation v = 0.5. In (a), the total time slot 7" varies from 25s to 175s, with a step of 25s. In (b), the mean
harvesting power p varies from 0.04W to 0.4W with a step of 0.06W. In (c), the harvesting power deviation ~ varies from 0.1 to 0.7 with a step of 0.1.

same amount of energy, i.e., B°" > B°/f and E°" = E°/7,
Besides, if the harvesting power p(t) is a constant and not
allowed to change, i.e., v = 0, then our online algorithm
generates exactly the same solution as the offline optimal
solution, i.e.,, B°" = Boff,

C. Simulations

In this subsection, the proposed dam_guided_online
algorithm is implemented and its efficiency is investigated
through simulations. In this evaluation, we compare the per-
formance of the proposed online algorithm against the optimal
offline solution. We also compare the performance of the
proposed algorithm against the time-sharing algorithm. Note
that the throughput of the optimal offline solution is the upper
bound any online algorithm can ever achieve. A desired online
solution is very close to the optimal offline solution.

In simulations, we assume there exists some small time
interval length, in which the harvesting power does not change.
We call such a small time interval a time slot. A total of T’
time slots are considered in evaluating the proposed algorithm,
by default 7" = 150s. For all time slots, the harvesting power
is assumed to be a random variable following the uniform
distribution U((1 — 7)p, (1 + 7)p), with the default mean
harvesting power p = 0.22W, and default harvesting power
deviation v = 0.5.

In this simulation, we change the total time slot 7', the
mean harvesting power p, and the harvesting power deviation
7, one at a time, to evaluate their impact on the algorithm
performance, as in [27]. Each value shown in the figures of this
section is the mean value of simulation results from 20 random
instances, and in each instance, a total of 7" harvesting powers
are generated according to the above model.

The ratio that the online algorithm achieves the offline max-
imum throughput is illustrated in Fig. 7, where the throughput
of our online algorithm is compared to the offline optimal
solution that maximizes the throughput.

In Fig. 7(a), the total time slot 7" varies from 25s to 175s,
with a step of 25s. We can see that as the total time T
increase, the throughput increases as well. Meanwhile, the
larger the total time slots, the better our online algorithm
performance. This is because the heart of our online algorithm
is to accurately anticipate future powers, and we use the

(41}
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Fig. 8. The achieved throughput by the time-sharing algorithm (o« = 0.1,
a = 0.3, a = 0.5), proposed online algorithm and proposed offline algorithm.
The default setting is total time 7" = 150s and the harvesting power deviation
v = 0.5. The mean harvesting power p varies from 0.04W to 0.4W with a
step of 0.06W.

history average harvesting power. For more time slots, the
more accurate the history average is in prediction. However,
even if the total time slot is only 25s, the achieved ratio is
nearly 88%, and for larger total time, the achieved ratio is
around 92%.

In Fig. 7(b), the mean harvesting power p varies from
0.04W to 0.4W with a step of 0.06W. We can see that both
the throughput and the efficiency of the proposed algorithm
increase as the mean harvesting power p increases. This is
because when p goes smaller, more time is needed to harvest
the same amount of energy. As a result, more difficulty
should be faced for our heuristic algorithm to achieve a good
throughput, so its efficiency drops. However, in all tested cases,
the achieved ratio stays higher than 85%.

In Fig. 7(c), the harvesting power deviation ~ varies from
0.1 to 0.7 with a step of 0.1. The throughput of our online
algorithm stays approximately the same while the offline
algorithm increases as the deviation -~y increases. This is
because the larger the deviation, the more difficult it is to
predict the further harvesting power. Therefore, our method
based on the historical average becomes less efficient. How-
ever, we can see from the figure that even if the deviation is
as high as 0.7, our online algorithm can achieve around 90%
ratio.

The comparison of the proposed online and offline
algorithm between time-sharing algorithm is illustrated in
Fig. 8, where the mean harvesting power p varies from 0.04W
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to 0.4W with a step of 0.06W. The time-sharing algorithm
is borrowed from [28], which simply divides each time slot
into the harvesting period and sending period. The ratio of
harvesting period to time slot is . We here compared the
throughput of the time-sharing algorithm and the optimal
online and offline algorithm we proposed. We can see from
the figure that in every situation, our algorithm achieved higher
throughput than the time-sharing algorithm.

As a conclusion of the simulation, the proposed online
algorithm is efficient and achieves more than 90% of the
offline maximum throughput in most tested cases. Both the
online algorithm and offline algorithm overcome the time-
sharing algorithm.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we first formulated the throughput maxi-
mization HTT-scheduling problem for the time-varying RF
energy harvesting systems. Then the wopt power was intro-
duced, which is with a basic but important property. Based
on this property, we introduced the concept of the dam
height. We then investigated a special case of the problem,
e.g., the harvesting power is monotonically decreasing. Some
optimality properties were observed, and the dam raising
system was designed to solve the special case problem. These
properties and the dam raising system were then extended
to the general scenario, where the harvesting power can
change dynamically. Finally, an online heuristic algorithm
was proposed and simulations were conducted to evaluate its
efficiency.

Our future work will focus on extending the system model
and optimization framework to scenarios involving multiple
wireless transmitters and receivers. This direction will address
interference and distributed resource allocation in networked
environments, thereby broadening the applicability of our
results to more realistic deployment conditions.

APPENDIX
A. Proof of Theorem 4

First, we prove that the algorithm can compute the optimal
HTT schedule of decreasing harvesting power. From Lemma 2
we could know that as dam height increases, the throughput
monotonically increases and the remaining energy mono-
tonically decreases. Thus, the HTT schedule of decreasing
harvesting power is monotonic. Since monotonic problems can
definitely be solved using bisection method, the algorithm can
give optimal HTT schedule of decreasing harvesting power.

Next, we prove that the algorithm has a time complexity
of O(T - log(£=e=)). When the algorithm returns at Line 11,
we must have Wypper — Wiower < A. We know that after
each iteration, the value wWypper — Wiower 18 Teduced to its
half. Therefore, after n iterations, we have Wypper — Wiower =
Q%wmaw. Therefore, when the algorithm returns at Line 11,
we have Q%wmm < A, which could be equivalently written
as n > logy(*%2=). Note that in each iteration, we invoke
is_shortage for O(T) times. So, the overall time com-
plexity is O(T - log(£=e=)).
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Fig. 9. The process of improving the throughput of the “left low, right high”
situation.

T

thy 4 t, Iy th 4 Loty

(a) (b)

Fig. 10. The process of improving the throughput of the “left high, right
low” situation.

B. Proof of Theorem 5

We prove this theorem by contradiction. In the optimal
schedule, assume, for contradictory, there does not exist time
7; and power level w; for interval [7;_1,7;] such that in the
interval any charging phase has p(t) > w; and any sending
phase has p(t) < wj;, then, we claim there is at least one
sending phase has different p(¢) on its both ends. The core
idea of our method is to show such a schedule can be further
improved, contradicting to its optimality assumption.

There are only two situations where the p(¢) on both ends of
the sending phase are not equal: the right end is higher, or the
left end is higher. Let’s call the situation where the right end
is higher the “left low, right high” and the situation where the
left end is higher the “left high, right low”, which are shown
in Fig. 9 and 10.

We first consider the “left low, right high” situation, which
is shown in Fig. 9(a). Suppose the sending phase is t; ~ t5 and
p(t1) < p(t2) and the sending power is p. Suppose E(t2) = C,
where C is a constant and C' > 0. Therefore, we have:

E(to) +/ 1 p(t)dt — p(ta — t1) = C.

to

a7

The first step is to move ¢ and ¢ forward, which is shown
in Fig. 9(b). We move ¢; and ¢, forward to ¢3 and 4. In this
process we keep E(ts) = C, until we find a pair of (¢3,t4)
such that p(t3) = p(t4). We could always find (¢3,t4), unless
ts touches the start point, which turned out to be a fast-
switching cycle. Note that the sending power is still p here.
Because t1 = t3 + (t1 —t3), Eq. (17) could also be written as

t3 t1
B+ [ a0+ [ pode-pta-t)=C. a9
to tS
The second step is to find ¢5, which is shown in Fig. 9(c).
We need to find ¢5 between t4 and ¢ such that E(¢y) remains
the same because E(ty) is different between Fig. 9(a) and
Fig. 9(b). Therefore, we have:

E(t0)+/3p(t)dt+/5p(t)dt

to ta

—p(ty —t3) — p(ta — t5) = C. (19)
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Subtract Eq. (18) from Eq. (19) and we have:

/wMﬂ&—/WMﬂMZMh—M—p%—M)(m)

ty t3
We claim that ¢5 —t4 must no greater than ¢; —t3. Otherwise,
we will find that, comparing Fig. 9(a) with Fig. 9(c), more
energy is charged and less energy is used, however, the
remaining energy stays the same, which is a contradiction.
The details of the proof are as follows:
Suppose t5 —t4 > t1 — t3. Add t2 on both sides so

to +t5 — 14 > 1o+t —t3.
Move t5 — t4 and ¢y to opposite side, and we have
to —t1 >ty —t5 +1t4 — t3.

The left part of the inequality is the length of the sending
phase in Fig. 9(a) and the right part is the length of sending
phases in Fig. 9(c). Note that the sending power is always p.
Therefore, the energy used to send in Fig. 9(a) is larger than
that in Fig. 9(c).

Meanwhile, from Fig. 9(c) we could find that p(t) is larger
in t4 ~ t5 than that in 3 ~ t1. Note that t5 — ¢4 is also greater
than ¢; — t3. Therefore, we have

ts t1
/p@a>/pmm
ta ts

Add |, :03 p(t) dt on both sides, and we get:

/:p(t) dH/: p(t) dt>/t:3p(t) dt+/: p(t)dt

which could be also written as

/: p(t)dt + /j p(t)dt > /: p(t) dt.

The right part of the inequality is the harvested energy in
Fig. 9(a) and the left part is the harvested energy in Fig. 9(c).
Therefore, the energy harvested in Fig. 9(a) is less than that
in Fig. 9(c). Therefore, the relationship of harvested energy
between Fig. 9(a) and Fig. 9(c) contradicts the relationship
of sending-used energy between Fig. 9(a) and Fig. 9(c).
Therefore, t5 — t4 must no greater than t; — t3.

Add t5 on both sides of t5 — t4 < t; — t3, and we have

to+1t5 —tg <to+t1 —ts.
Move t5 — t4 and t; to opposite side, and we have
to —t1 <tog —t5+t4 —t3.

The left part of the inequality is the length of the sending phase
in Fig. 9(a) and the right part is the length of the sending
phases in Fig. 9(c). Note that the sending power is always
p. Therefore, the sending rate is always a constant, which is
log(1 + p). Therefore, the throughput in Fig. 9(c) is no less
than that in Fig. 9(a). Therefore, we improved the throughput
of the “left low, right high” situation.

Next, we consider the “left high, right low” situation, which
is shown in Fig. 10(a). Suppose the sending phase is ¢; ~
ta, p(t1) > p(t2), and sending power is p. We continuously
perform the following operations until p(t1) = p(t2).
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Fig. 11. If actually sending power p is smaller (larger) than the optimal
sending power Py, (w), we can expand (shrink) the sending phase to improve
the solution.

First, we select a short interval of § after ¢; and ¢o, which
is shown in Fig. 10(b). 4 must satisfy the following condition:
every p(t) in t; ~ t; + 6 must be greater than that in t5 ~
ta + 0. Therefore, we have:

/t1+6 p(t)dt > /t2+6 p(t) dt.

t1 to

That is to say, the harvested energy in ¢t ~ ¢+ is larger than
that in ¢ ~ to+0J. Then we swap these two intervals, which is
shown in Fig. 10(c). Swapping is always feasible. Because by
swapping, we first harvest and then send. After swapping, the
remaining energy at to + & should be larger than O because
the harvested energy in t; ~ t; + ¢ is larger than that in
to ~ ty + 0. The excess remaining energy could be used to
increase sending power in the sending phase. Therefore, the
throughput could be improved.

By continuously perform these operations, p(t1) will even-
tually equal to p(¢2). Therefore, we improved the throughput
of the “left high, right low” situation.

Therefore, the p(t) on both ends of the sending phase should
be the same, otherwise, we can always improve.

C. Proof of Lemma 3

Here we draw Fig. 11 to show how we expand and shrink.
Below we prove the existence of the operation.

We first consider the situation of shrinking, which is shown
in Fig. 11(a). Suppose the original dam height is w. Therefore,
according to Eq. (8), the optimal sending power is P, (w).
Suppose the actually sending power is p, and P, (w) > p.

Assume we exclude a small duration of §; at the beginning
and exclude 5 at the end. Note that after we shrink, both ends
are still at the same height w’. Here we use F; to represent
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dam height w,

Y~

*The area of ;Z;Z keeps the same as the figure before
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*The area of EIEZ keeps the same as the figure before
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(a) (b)

Fig. 12.
(b) The balance operation. (c) The shrinking and expanding operation.

the energy consumed in the sending period before we shrink

and FEs represents that after we shrink. Therefore, we have
E1 = 7pl
E2 = / p(t) dt +/ p(t) dt — (l — 51 — 52)Pw(w/)
51 52

Assume AF is the difference of energy consumption between
the schedules before and after we shrink. Therefore, we have:

AE =FE, - E;

/61p(t)dt+/62p(t)dt

+ (Ip = (I = 61 — d2) Py (w")).
When §; + d = [, we have:

AFE =

p(t) dt + / p(t) dt + pl > 0.
51 o

When §; + 05 = 0, which means w = w’, we have:
AE =1(p— Py(w") =1(p — Py(w)) <0.

Note that A F is a continuous function of d; and d5. Therefore,
according to Bolzano’s Theorem there exists a pair of (41, d2)
which let AE = 0. Therefore, there exists an operation that
meets the first constraint.

Next, we prove this operation meets the second constraint,
which means the operation doesn’t decrease the throughput.
Compared with the case before we shrink, the harvested energy
that can be used in sending is f51 p(t)dt + [ p(t)dt more.
Let 6 = + 02 and p’ = P, (w’). Note that

/ (1) dt + / p(t)dt > W (81 + 63) = w5,

81 52

Let’s ignore the difference between | 5, p(t)dt + J 5, p(t)dt

and w’d, because if we don’t decrease throughput with less

energy, we won’t decrease the throughput with more energy.
Suppose we used E energy before we shrink. We have E +

w'l = pl + w'l, hence | = i fi’;l, and therefore
log(1
B = (B +wn8dtr) @1)

w' +p
After we shrink, we have

p(l—0)=E+w.

©

The process of improving throughput while not increasing energy consumption. (a) A common situation where has two different dam heights.

We have (w' + p')(I — ) = E + w'6 — w'd + w'l, hence

!’
l—6= ij’i‘; L and therefore

log(1+ p')

B' = (E+w'l

(22)
By treating p as a variable, the throughput is a function of p.
Through the analysis of Eq. (7) and the Fig. 3, we can easily
conclude that when P,(w') > p’ > p, we have B’ > B.
Therefore, this operation meets the second constraint.
The proof of expanding is the same as shrinking, which will
not be further elaborated here.

D. Proof of Theorem 6

We will use Lemma 3 (Expanding and shrinking) to prove
Theorem 6 here. Suppose there is a sending phase in the
optimal HTT schedule where sending power p is not Py, (w).
w 1is the dam height of the sending phase. According to
Lemma 3, the shrinking(expanding) doesn’t change the energy
consumption. Moreover, the shrinking(expanding) will not
decrease the throughput. Therefore, we could apply shrink-
ing(expanding) on the sending phase. And the throughput after
we apply shrinking(expanding) will be no less than that before.
Therefore, we improved the optimal HTT schedule, which is a
contradiction. Therefore, in each sending phase of the optimal
HTT schedule, the sending power should be P,,(w), where w
is the dam height of the sending phase.

E. Proof of Lemma 4

Consider a common situation shown in the Fig. 12(a).
Assume there are two sending phases. The dam heights and
sending power of these two sending phases are w;, wy and
P, (w1), Py(ws). Note that wy # wsy. By performing the fol-
lowing operations, we could improve the throughput without
increasing energy consumption.

First we balance the sending power of two sending phases,
which is shown in Fig. 12(b). Suppose the lengths of two
sending phases are [; and /5. For the sake of convenience in our
proof, let p; = P, (w1), p2 = P,(w2) and denote p3 as the
balanced sending power. The premise of the balance operation
is not to increase energy consumption, which means the areas
of sending phases are equal in Fig. 12(a) and Fig. 12(b). Thus,

pili + p2la = p3(ly +12).
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Therefore,

_ pili + p2lo
pP3=—F—"7—
l1+ 1o
Before we perform the balance operation, the throughput is
I3 log(14p1)+12log(1+ p3). After we perform the operation,
the throughput is (I;+12) log(1+4p3). Because the concavity of
the power-rate function, we could use the Jensen’s inequality.
Thus, we have

ll IOg(l + pl) + lg log(l + pg)
l1+ 1

(23)

pil1 + pala
<log(l+ ——F).
g( I+ 1 )
(24
By substituting Eq. (23) into Eq. (24), we can get

l1log(1 4 p1) + lalog(1 + p2) < (I1 + I2) log(1 + p3).
(25)

Note that the left part of Eq. (25) is the throughput before the
operation and the right part is the throughput after the opera-
tion. Therefore, the balance operation improves the throughput
without increasing energy consumption.

Next, we perform shrinking and expanding operations in
two sending phases. According to the Lemma 3, both the
shrinking and expanding operations do not increase the energy
consumption and both the operations do not decrease the
throughput. Therefore, the throughput is improved without
increasing energy consumption after we perform these two
operations in the sending phases.

Note that after performing operations shown in Fig. 12(b)
and Fig. 12(c), the difference between w; and wy decreased.
This is because the shrinking(expanding) operation shortened
the length of the left(right) sending phase. Therefore, the
dam height of the left(right) sending phase in Fig. 12(c)
decreased(increased) compared with Fig. 12(a). Thus, the
difference between w; and w, decreased.

By continuously performing operations in Fig. 12(b) and
Fig. 12(c), the dam heights of the two sending phases will
eventually reach the same height. In this process, the through-
put was improved while the energy consumption was not
increased.

F. An Example of the Optimal Solution

An example of the optimal solution that
Lemma 5, 6, and Definition 6 is given in Fig. 14.

satisfy

G. Proof of Theorem 7

First, we prove that the algorithm can compute the optimal
HTT schedule for the offline problem. In every iteration of the
while loop, the same problem repeats, that is starting from 7y,
find the next optimal changing point and the corresponding
dam height. We, therefore, need only to show that in the first
iteration, where 75 = 0, the dam height w and changing time
7 are optimally set in Line 5, i.e, 77" = 7 and w{"" = w.
Here we prove it by employing proof by contradiction.

Suppose, on the contrary, the first optimal changing point

Tfpt # 7, where 7 is returned by find_emptyP. We then

have the following two cases: (1) T{’pt > 7 and (2) Tfpt <T.
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(b) Tf Pt < . After raising the dam, we need to reach 7 with
a higher dam height according to Lemma 5. However, this is
impossible.

opt

Fig. 13. If frfpt # 7, then there are two cases: 777" > T and Tfpt <T.

Case 77" > 7, illustrated in Fig. 13(a). We must have

wiP" < w because the dam height w already makes the battery
energy-critical at 7, we have to lower the dam to make the
energy-critical at 77" Since w returned by dam_raising-
_shotg is the highest feasible dam height position w and the
battery is energy-critical at time 7 for the first time, then, for
dam height lower than w, there doesn’t exist energy-critical
point. Then, it is impossible to have a single dam height that
can make the battery energy-critical at any time ¢ > 7.

Case 7,7 t < 7, illustrated in Fig. 13(b). We must have
wS" > w because the dam height w does not make the
battery energy-critical at any time ¢ < 7, we have to raise
the dam to make the energy-critical at 7/”*. We claim that
in the optimal dam heights, there is at least one dam height
w{?* in (or partially in) duration [7{"*, 7), such that w{"* < w.
Otherwise, optimal dam heights in [0, 7) are all greater than
w, contradicting the fact that w depletes battery at 7. This is
a contradiction to Lemma 5.

Therefore, the first optimal changing point 7/** = 7. In this
way, the size of the problem becomes smaller. By using the
proof again, we can show that the algorithm can compute the
optimal HTT schedule for the offline problem.

Next, we prove that the algorithm has a time complexity
of O(T?log(2%22)/At). From Theorem 4 we could know
that the algorithm dam_raising_shotg has a time com-
plexity of O(T' - log(#=e=)). In every while loop, we at
least let 7y increase At. Because the worst situation is that
we couldn’t raise the dam, therefore, 7 = 7. In the worst
situation we assign 7 + At to 79, that is, let 7y increase At.
Therefore, in every while loop, we at least let 7y increase Af.
As a result, the while loop will at most run T'/At times.
In every while loop, we will run dam_raising_shotg
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Fig. 14. An example of the optimal solution for the general harvesting power p(t).
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once and its time complexity is O(T"-log(#%=)). We also run
find_emptyP once and its time complexity is O(T"). There-

fore,

log(

the time complexity of each while loop is max(O(T -
brax)) O(T)) = O(T - log(#=e=)). Note that we just

proved that the while loop will at most run 7/At times.
Therefore, the algorithm has a time complexity of O(T/At -
T -log(2=ez)) = O(T? log(Lzes )/ At).
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