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Abstract—Energy harvesting is a promising technique to
address the energy hunger problem for thousands of wireless
devices. In Radio Frequency (RF) energy harvesting systems, a
wireless device first harvests energy and then transmits data with
this energy, hence the ‘harvest-then-transmit’ (HTT) principle is
widely adopted. We must carefully design the HTT schedule, i.e.,
schedule the timing between harvesting and transmission, and
decide the data transmission power such that the throughput can
be maximized with the limited harvested energy. Distinct from
existing work, we assume energy harvested from RF sources is
time-varying, which is more practical but more difficult to handle.
We first discover a surprising result that the optimal transmission
power is independent of the transmission time, but solely depends
on the RF harvesting power, for a simple case when the energy
harvesting is stable. We then obtain an optimal offline HTT-
scheduling for the general case that allows the RF harvesting
power to vary with time. To the best of our knowledge, it is the
first optimal HTT-scheduling algorithm that achieves maximum
data throughput for time-varying RF powered systems. Finally,
an efficient online heuristic algorithm is designed based on the
offline optimality properties. Simulations show that the proposed
online algorithm has superior performance, which achieves more
than 90% of the offline maximum throughput in most cases.

Index Terms—Wireless Communication Networks, Algorithm
design, Wireless power transfer, Harvest-then-transmit, Radio
frequency energy harvesting, Time-varying wireless power

I. INTRODUCTION

The energy hunger problem is one of the major issues
for thousands of wireless devices nowadays, such as wireless
sensors, Internet of Things devices, and autonomous vehicles,
affecting their working lifetime and thus user experiences.
Energy harvesting is a promising technique being developed
to address this problem. New research efforts are continu-
ously being made in this direction to harvest energy from
various sources. Some recent research work includes magnetic
wireless power transfer [1], [2], harvesting energy from the
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Fig. 1. An illustration of a system that obtains energy from surrounding RF
signals and sends its data using the harvested energy.

radio frequency [3], [4], solar energy harvesting for electric
autonomous vehicles [5], and underwater ultrasonic wireless
power transfer [6].

For the vast majority of wireless devices deployed around
the human habitat, energy from radio frequency (RF) is one
of the important sources. Since the wireless signal not only
carries information but also carries power. Hardware for RF
power harvesting has been built to harvest energy from every-
day radio frequency signals such as TV broadcast signals [7],
WiFi signals [8] and Bluetooth signals [9]. Meanwhile, radio
wave interference has been utilized to charge multiple devices
concurrently [4]. For a long time, off-the-shelf commercial
products on RF wireless power transfer (WPT) have been
available from both Powercast [10] and WISP [11]. Fig. 1
illustrates such a system that uses harvested energy to power
its operations and transmit data.

A wireless device in an RF powered system usually first
harvests energy from RF signals and then transmits data with
the harvested energy. There are three primary reasons that
the two operations execute sequentially. Firstly, in low-cost
sensors, crucial hardware components like antennas are shared
by both the harvesting and transmission modules, preventing
simultaneous operations [13], [14]. Secondly, most energy
harvesting devices, including commercial products from Pow-
ercast [10] and WISP [11], use supercapacitors as energy
buffers, which inherently cannot support concurrent discharg-
ing (transmitting data) and recharging (harvesting energy) [12].
Lastly, the limited bandwidth needs to be shared by the
two operations. For example, Mohanti et al. [8] propose a
time-switching strategy that shares the ISM band for WiFi
data transmission and RF WPT; more recently, Clerckx et
al. [28] built a practical energy harvesting system that divides
operation time into distinct slots for either receiving power or
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transmitting data.
In this paper, we use ‘harvest-then-transmit’ (HTT) to

represent the principle of first harvesting energy then trans-
mission data. HTT schedule has already been widely adopted
widely [8], [12], [13], [15]–[17], [19], [21], [22].

A. Related Work

Time-varying is one of the most significant features for
general energy harvested from the surrounding environment,
including energy harvested from RF signal power sources [13],
[15], and from other power sources [18]. Despite tremendous
research efforts being spent in this direction, how the time-
varying RF power affects the wireless data throughput, even
for a simple scenario including only one transmitter and one
receiver, is not yet fully investigated.

This paper therefore studies such a fundamental HTT-
scheduling problem aiming at transmitting the maximum data
in a given time duration, assuming the wireless harvesting
power is time-varying. More specially, we wish to optimally
determine for the transmitter when to do energy harvesting
(charging), when to do data transmission (sending), and what
transmission power to use, in order to maximize data trans-
mission with the limited and dynamic harvested power.

Some of the most relevant research work includes [12],
[15], [19], [20]. Ju et al. [19] are among the first group of
researchers to investigate this problem, although they assume
constant harvesting power. For one transmitter one receiver
scenario, they have observed an important tradeoff that setting
a longer charging time leads to a shorter sending time but
at a higher transmission rate since more energy was charged,
while setting a shorter charging duration results in a lower
transmission rate but a longer sending duration. They have
proposed a way of finding the best time allocation to achieve
maximum data throughput. Zhao et al. [20] have also studied
the same throughput maximization problem and proposed a
numerically searching technique to solve it. Zewde et al. [15]
extends such results on throughput maximization by further
considering statistical QoS constraints. Li et al. [12] study
the network utility (or throughput) maximization problem for
cooperative networks. Although Zewde et al. [15] and Li et
al. [12] target advanced topics, they both provide analysis for
the simple scenario with only one transmitter and one receiver
and constant RF harvesting power. Assuming constant RF
harvesting power simplifies the theoretical analysis of HTT
and its schedule. However, how the time-varying RF power
affects the data throughput remains a theoretically unsolved
challenging problem, even for a simple scenario that includes
only one transmitter and one receiver.

Distinct from the above most relevant work [12], [15], [19],
[20] that aim at the optimal time allocation between charging
and sending, we approach the optimal solution from a quite
different angle i.e., by targeting the optimal data transmission
power. This new approach has led us to discover a surprising
result. Our previous work [16], [17] assumes the stable power
transfer and studies a different optimization problem, i.e.,
design an HTT schedule to achieve the minimum delay for
transmitting a given set of data packets. These previous works

of ours have inspired the discovery of the basic results of this
paper.

Extensive research efforts have been devoted to various
topics in RF powered systems. One of the most notable
system-building works comes from Clerckx and his coau-
thors [28], [29]. The system they developed harvests RF energy
from the electromagnetic waves of distributed antennas. More
specifically, their system has two antennas: one is dedicated
to harvesting energy, and the other is for transmitting data.
Meanwhile, time is divided into slots, each slot being assigned
either for energy harvesting or data transmission. Lopez et
al. [30] surveyed the research area of RF harvesting, catego-
rizing the harvesting methods based on the number of antennas
used and how these antennas are organized to harvest RF
energy. Both Lopez et al. [31] and Valentini et al. [32] allow
energy to accumulate over time beyond a single ‘harvest-and-
transmit’ round, while the former focuses on a finite battery
and finite block length, and the latter studies the problem when
the batteries are affected by aging. Huang et al. [33] studied
a more general problem of one-to-many RF power transfer,
investigating how to determine the harvest-transmit time ratio
and transmission power. Choi et al. [34] allow random access
to the wireless broadcast medium. They focus on the harvest-
or-access problem for each time slot. Karadag et al. [35]
explore how to control power and allocate harvest-transmit
time, by proving the NP-hardness and then proposing heuristic
algorithms.

The time-varying power harvested from harvesting is one
of the most important characteristics and is assumed by
some recent research work [18]. Qureshi et al. [18] design
transmission rate selection online algorithm for cognitive ra-
dio networks assuming the dynamic power from an energy
harvesting source. Kim et al. [23] provides a power allocation
policy based on reinforcement learning, assuming random
energy arrival and time-varying channels. Zhang et al. [24]
design a general framework to solve the public goods problem
for the WPT network, considering the time-varying channel
condition.

While general energy harvesting from the surrounding en-
vironment has been discussed, RF Wireless Power Transfer
(WPT) proves to be a more reliable solution for the vast
majority of wireless devices deployed in human habitats.

B. Motivation and Contributions
From the above discussion, we are motivated by the need

to design an efficient HTT-scheduling to achieve maximum
data throughput for time-varying RF powered systems. The
motivations for our work are listed below.

• There is a lack of optimal results for this fundamental
problem, despite the tremendous research efforts that
have been expended in this direction. Most related work
assumes that the wireless power transfer is stable and
static. Whether there exists an optimal solution for the
fundamental throughput maximization problem for time-
varying RF powered systems in a simple scenario with
only one transmitter and one receiver is still open.

• We are encouraged by our previous work. Although our
previous work [16], [17] studies a different problem and
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assumes constant energy harvesting from RF power, we
do get inspired by handling the tradeoff of charging and
sending. We attack the new optimization problem with a
quite different approach, which has led us to discover a
surprising result that no existing work has achieved.

In this paper, we attempt to solve the theoretically challeng-
ing optimization problem.

• We establish a set of optimality properties for cases
with stable energy harvesting, which characterize the
necessary conditions for any optimal schedule.

• Our study reveals the surprising discovery that the opti-
mal transmission power is independent of the transmis-
sion time but depends solely on the RF harvesting power.
This discovery offers valuable insights for addressing
related problems in the field.

• Additionally, we introduce an optimal offline HTT-
scheduling for the general case that allows RF power
to vary with time. To the best of our knowledge, it is
the first optimal HTT-scheduling algorithm that achieves
maximum data throughput for time-varying RF powered
systems.

• We also present the design of an online heuristic al-
gorithm aimed at maximizing throughput in RF power
harvesting systems. Its superior performance compared
with the optimal offline algorithm is demonstrated by
simulations.

The remainder of this paper is organized as follows. In
Section II, we formally define the system model and the opti-
mization problem. A set of optimality properties for the HTT-
scheduling is obtained and presented in Section III. An optimal
scheduling algorithm for the defined problem is presented in
Section IV and Section V. The online scheduling problem
is investigated in Section VI, where an online algorithm is
presented. Simulation results are also discussed in the same
Section. Section VII concludes this paper.

II. PROBLEM FORMULATION

A. System model

We consider a simple communication channel consisting
of a data receiver and a wireless-powered data transmitter.
The transmitter transmits data to the receiver over an AWGN
wireless communication channel, which is widely adopted in
the literature [13], [15], [16]. An outside power source, such as
TV/WiFi broadcasting signal, cellular signal, or power beacon,
is assumed to provide wireless power to the transmitter.
Generally, the energy harvested from the outside power source
is varying in time. The RF harvesting power is therefore a
time-varying function, denoted as p(t), 0 ≤ t ≤ T , where T
is the length of the duration in consideration.

The transmitter has to first harvest energy before it can
transmit data, so the ‘harvest-then-transmit’ principle is used.
We therefore define a two-phase cycle that consists of a
charging phase and a sending phase. In the charging phase,
the transmitter harvests the wireless power, and in the sending
phase, it sends data to the receiver. The transmitter repeatedly
and continuously switches between the two phases in the time
interval [0, T ]. Suppose that there are m cycles in this interval.

Charging Power           Sending Power            Remaining Energy
Charging Phase            Sending Phase
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Fig. 2. A wireless transmitter harvests energy in the charging phases and
transmits data in the sending phases. The charging power p(t) is a time-
varying function. The phase switching time ti and the sending power ρ(t)
are to be determined to maximize throughput. Obviously, the remaining energy
increases in the charging phases and decreases in the sending phases.

Thus, there are 2m phases and 2m switches, which occur at
time instances {t1, t2, . . . , t2m}, 0 < t1 < . . . < t2m. The 2m
phases are labeled from 1 to 2m, with phase i starting from
time ti−1 and ends at ti(i = 1, 2, . . . , 2m). The lengths of
these phases are to be determined by our algorithm. However,
it is assumed that there is a lower bound ∆t for the length of
any charging phase, which is imposed by the hardware.

Note that we assume t0 = 0 and the battery has an initial
energy Einit. Obviously, phase 2i−1 is a charging phase, and
phase 2i is a sending phase, i = 1, 2, . . . ,m.

In sending phases, the transmission power is denoted as
ρ(t), which is subject to the power constraint of Eq. (1), where
ρmax is the maximum transmission power imposed by the
hardware.

0 ≤ ρ(t) ≤ ρmax, 0 ≤ t ≤ T. (1)

At time t, the transmitter could choose one of the actions
below:

1) Consume the energy of the battery at a given power ρ(t)
and transmit data.

2) Charge the battery with power p(t). The minimum
charging phase length is ∆t, which is imposed by the
hardware.

Fig. 2 illustrates the relations among the notations of
the charging phase, the sending phase, the harvesting power
(charging power), the transmission power (sending power), and
the remaining energy.

B. Problem formulation

Let H(t) be the total energy charged into the battery before
time t, which can be calculated as follows.

H(t) =

k−1∑
i=1

∫ t2i−1

t2i−2

p(t) dt+

∫ min{t,t2k−1}

t2k−2

p(t) dt,

where k satisfies t2k−2 < t ≤ t2k.
Let E(t) be the total energy consumed before time t, which

can be calculated as follows.

E(t) =

k−1∑
i=1

∫ t2i

t2i−1

ρ(t) dt+

∫ min{t,t2k}

min{t,t2k−1}
ρ(t) dt,

where k satisfies t2k−2 < t ≤ t2k.
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Let R(t) be the remaining energy in the battery at time t,

R(t) = Einit +H(t)− E(t).

We ensure that the remaining energy can not be negative:

R(t) ≥ 0, ∀t ∈ [0, T ]. (2)

Because current technology cannot fully charge the battery
wirelessly in a short time, the battery capacity is assumed
to be large enough and can never be overcharged. Therefore,
the battery capacity does not affect the performance of any
schedule.

During the sending phase, the received signal at time t from
the transmitter is given as

Ut = htX +Nt

where Nt ∼ CN (0, 1) is the circularly-symmetric complex
Gaussian noise at the AP with unit variance, and ht denotes
the channel fading coefficient. Accordingly, the transmission
power ρ(t) at time t is tightly related to the transmission rate
r(t) through the power-rate function of Eq. (3), as commonly
assumed [13], [15], [16]

r(t) = log(1 + |ht|2 ρ(t)). (3)

Note that in some other related works, it is also common to
assume r(t) = 1

2 log(1+ |ht|2 ρ(t)), and our proposed method
is easy to be extended to these cases. In fact, as long as r′′(t) <
0, our main results of this paper hold, more details can be
found in the next section. In this paper, we assume |ht| = 1. As
a consequence, the total amount of data transmitted during the
entire time interval [0, T ] can be calculated by the following
equation

B =

m∑
i=1

∫ t2i

t2i−1

log(1 + ρ(t)) dt. (4)

Since we are maximizing the throughput over a fixed period
of time, we can simplify the problem by considering the total
amount of data transmitted as the throughput. Therefore, B in
Eq. (4) represents the data throughput.

Definition 1 (The HTT-scheduling problem). Let p(t), t ∈
[0, T ] be the harvesting power, the HTT-scheduling problem
is to determine the phase switching points ti, i = 1, 2, . . . , 2m
and the transmission power ρ(t) in sending phases, so that
the data throughput B in Eq. (4) is maximized while satisfying
the power constraint Eq. (1) and remaining energy constraint
Eq. (2).

The HTT-scheduling problem of Definition 1 is called the
offline case if the function p(t), 0 ≤ t ≤ T is completely
known before scheduling. It is called the online problem if
p(t) is not known until time t reaches the start time of a two-
phase cycle.

Unless otherwise specified, we use watt as the unit for
power, joule for energy, second for time, and KB for through-
put.

III. THE wopt POWER

In this section, we introduce the notion of wopt power,
which will play a key role in designing an optimal HTT
schedule. We use a simplified HTT-scheduling problem to
explain this notion.

Definition 2 (Basic HTT-scheduling problem). An HTT-
scheduling problem with the following 2 assumptions is called
basic HTT-scheduling problem. 1) The harvesting power p(t)
remains constant for the entire duration of [0, T ]; and 2) there
is no limit on the maximum transmission power ρmax.

It is well-known that [12], [15], [19] if the wireless trans-
mitter does not harvest any energy but solely relies on the
initial energy Einit for the entire duration of T , then, because
of the concave property of the power-rate function Eq. (3), the
optimal transmission power is

ρ =
Einit

T
, (5)

which depends on both the initial energy and the length of the
duration in consideration.

Now we consider the wireless device has another option:
It can harvest RF power to charge the battery. In this case,
if there are multiple charging phases, we can always move a
later charging operation to an earlier time. Therefore, for this
case, a single charging phase followed by a single sending
phase will produce an optimal solution.

Let us discuss how to determine the switching point between
these two phases. Suppose that the phase-switching point is t1.
Because a single constant transmission power ρ should be used
in the sending phase, we obtain the following equation.

Einit + pt1 = ρ(T − t1).

Therefore,

t1 =
ρT − Einit

p+ ρ
. (6)

Since the data transmission rate is log(1 + ρ) at transmission
power ρ, the total throughput B can be calculated by B =
(T − t1) log(1 + ρ). Plugging in the expression (6) for t1, we
obtain the following function (7) for B. Clearly, it is a function
of variable ρ.

B(ρ) = (pT + Einit)
log(1 + ρ)

p+ ρ
. (7)

To help understand the function B(ρ), we illustrate its shape
in Fig. 3(a) when p = 10, Einit = 7.6 and T = 8. It can be
seen that there is a maximum value of B(ρ) for ρ ∈ [0, 30].
To analytically locate the maximum value of function B(ρ),
we calculate its first and second order of derivatives as shown
below.

B′(ρ) = (pT + Einit)(
log(1 + ρ)

p+ ρ
)′

=
pT + Einit

(p+ ρ)2
[(1 +

p− 1

1 + ρ
)

1

ln 2
− log(1 + ρ)].
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Fig. 3. (a) The shape of B(ρ) in Eq. (7) when p = 10, Einit = 7.6 and
T = 8, which is maximized at ρw ≈ 7.2 and the phase switching time in
Eq. (6) is t1 = 2.9. (b) The curve of function ρ = Pw(p) when ρmax = 7.

Because (pT +Einit)/((p+ρ)2) > 0, we define function g(ρ)
as

g(ρ) = B′(ρ)/
pT + Einit

(p+ ρ)2

= (1 +
p− 1

1 + ρ
)

1

ln 2
− log(1 + ρ).

Obviously, for any given ρ, g(ρ) and B′(ρ) share the same
sign and zero point. Because

g′(ρ) = − p− 1

(1 + ρ)2 ln 2
− 1

(1 + ρ) ln 2
= − p+ ρ

(1 + ρ)2 ln 2
< 0,

g(ρ) monotonically decreases. Hence B(ρ) is concave and its
maximum value can be found at point ρw, such that g(ρw) =
0. By setting g(ρw) = 0 we have the following derivations:

(1 +
p− 1

1 + ρw
)

1

ln 2
= log(1 + ρw),

EXP(1 +
p− 1

1 + ρw
) = 1 + ρw,

p− 1

1 + ρw
EXP(

p− 1

1 + ρw
) =

p− 1

e
,

W(
p− 1

e
) =

p− 1

1 + ρw
,

where function W(z) is called the Lambert W function [25],
which has the following property,

W(z)EXP(W(z)) = z.

Therefore, we have

ρw =
p− 1

W(p−1
e )

− 1. (8)

Fig. 3(a) shows an example of the function B(ρ). Since
ρw ≈ 7.2 for this example, t1 = ρT−Einit

p+ρ = 7.2×8−7.6
10+7.2 = 2.9.

From Eq. (6), we observe that, if ρT ≤ Einit, then t1 should
be 0 or negative, which means no charging is needed. We state
the main result in the following lemma, whose correctness
follows directly from the above discussion.

Lemma 1. If Einit ≤ ρwT , then the optimal solution for
the basic problem in Definition 2 consists of a charging phase
and a sending phase. The phase transmission power is ρ = ρw
determined by Eq. (8) and switching point is t1 determined by

Eq. (6). If Einit ≥ ρwT , then no charging phase is needed,
and the transmission power is determined by Eq. (5).

We further have the following important theorem, despite
the optimal charging/sending phase switching point, namely
t1 from Eq. (6), depends on Einit, p and T .

Theorem 1. The optimal sending power ρw is independent
of Einit and T , and depends only on the harvesting power p
when Einit ≤ ρwT .

This theorem is quite surprising. It plays a key role in
the optimal solutions for the general HTT-scheduling problem
defined in Definition 1.

Some previous work in the literature [15], [19] also stud-
ied the same basic problem, but they all failed to discover
Theorem 1 because they focused on finding the optimal phase
length t1, while we, instead, focus on computing the optimal
transmission power ρ. In a recent attempt by Zewde et al. [15],
the optimal harvesting time from Eq. (25) in [15],

τ∗B =
eW( p−1

e )+1 − 1

p+ eW( p−1
e )+1 − 1

, (9)

is a specially case of our optimal phase switching time t1 from
Eq. (6) by setting ρ = ρw,

t1 =
ρwT − Einit

p+ ρw
=

( p−1

W( p−1
e )

− 1)T − Einit

p+ p−1

W( p−1
e )

− 1
. (10)

Note that eW( p−1
e )+1 = p−1

W( p−1
e )

by the definition of the
Lambert W function. When T = 1 and Einit = 0, our result
Eq. (10) can be reduced to their result Eq. (9). However, we
instead, focus on the optimal transmission power, which leads
to the surprising new discovery in Theorem 1. Our discovery
reveals an essential property of RF powered data transmission
that has never been disclosed before.

We now introduce the wopt power in preparation for the
general case, where the wireless power p may change from
time to time.

Definition 3 (wopt power Pw(p)). For any given harvesting
power p, the wopt power Pw(p) is defined as follows.

Pw(p) = min{ p− 1

W(p−1
e )

− 1, ρmax}, (11)

where ρmax is the maximum available transmission power
which is imposed by the hardware.

The function Pw(p) is the most important concept through-
out this paper. Fig. 3(b) shows the curve of this function for
the range of p ∈ (0, 12) and ρmax = 7 to give the reader an
intuitive idea of this function. For any given wopt power ρ
which is less than ρmax, we can compute its inverse function
to obtain the harvesting power p = P−1

w (ρ).

IV. AN OPTIMAL OFFLINE SOLUTION FOR DECREASING
HARVESTING POWER

In this section and in the following section, we will develop
an optimal offline algorithm for the HTT-scheduling problem
defined in Definition 1, which is the basis of the algorithm
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for the general case investigated in the next section. In this
section, we solve a simpler case where the harvesting power
function p(t) is assumed to be monotonically decreasing.

Before we design the algorithm that computes the optimal
solution, we first want to see what the optimal solution should
be like. We therefore present the following theorems on the
optimal solution.

Theorem 2. For HTT-scheduling problem, when the harvest-
ing power p(t) is monotonically decreasing, there exists an
optimal solution in which a power level w exists such that (1)
in any charging phase we have p(t) > w, (2) in any sending
phase we have p(t) ≤ w, 0 ≤ t ≤ T . The level w is called the
dam height.

Proof. See Appendix A.

Theorem 3. In the optimal solution, when the harvest power
p(t) is monotonically decreasing, the sending power of the
sending phase should be Pw(w), where w is the dam height.

Proof. See Appendix B.

From Theorem 2 and Theorem 3, we have known that
there is an important dam height, which not only distinguishes
charging phases from sending phases but also determines the
sending power. Therefore, once the optimal dam height is
determined, the HTT schedule is determined.

Definition 4 (Dam w HTT-schedule). Given the harvesting
power p(t) and the initial battery energy Einit, the following
scheduling is called the Dam w HTT-schedule.

• Any charging phase [a, b] satisfies p(t) ≥ w, t ∈ [a, b].
• Any sending phase [c, d] satisfies p(t) ≤ w, t ∈ [c, d], and

its sending power is Pw(w).

Note that, inside either phase, we may have p(t) = w. This
could occur especially when p(t) is a constant function.

Now the only question is how to find the optimal dam height
wopt such that the Dam wopt HTT-schedule maximizes data
throughput before T .

We start from the following lemma, which is obviously true
with no need of proof.

Lemma 2. In a Dam w HTT-schedule, when the dam height
w increases, the energy used in sending increases, while
charged energy decreases as charging phases shrink, hence
the remaining energy R(T ) reduces monotonically.

Since in the optimal HTT-schedule, there must be no
remaining energy in the battery at the ending time T , our
strategy is to search the optimal dam height wopt such that in
the Dam wopt HTT-schedule, R(T ) = 0.

We hence design the dam raising system to find the op-
timal dam height. Such a system is built upon the time-
power diagram, as presented in Fig. 4. Note that in this
diagram, we introduce a virtual phase with a virtual har-
vesting power p(t) = wmax, where wmax = P−1

w (ρmax),
t ∈ [−Einit/wmax, 0]. This virtual phase is to pre-charge the
battery to Einit.

We now introduce the dam raising system on the time-
power diagram in Fig. 4. The curve of p(t) is treated as a

5 10 15 200-4
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(a) An example of the dam raising system.

p E

t
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>

(b) Dam raising.

Fig. 4. An example of the dam raising system and how the dam is raised.
(a) The dam raising system is introduced on the time-power diagram, where
the curve of p(t) is treated as a mountain (especially for the general p(t)).
In this mountain area, a dam is built to hold water. A dam with height w can
hold the water table with height Pw(w) (see Section III). The dam height
w divides the mountain area into hills and valleys. Only the valley and its
underground hold water, no water beneath the surfaces of the hill. The area
right beneath the surface of the hill is called the dry zone (charging zone),
whose area is actually the amount of energy charged into the battery; the
area right beneath the water table is called the water zone (sending zone)
whose area is actually the energy consumed for sending data. (b) In the dam
raising system, the dam height w is raised slowly to find its optimal position.
It starts with w = 0 and stops raising as soon as the dry zone area equals
the water zone area. The green curve indicates the remaining energy in the
battery, which increases during the charging phase and decreases during the
sending phase.

mountain. Although in the current decreasing harvesting power
case, there is only one downslope, our system is intended for
general p(t) where both downslopes and upslopes exist, i.e.,
there are hills and valleys. In this mountain area, we want to
build a dam to hold water (in the valley and underground).
Assume a dam with height w can hold the water table with
height Pw(w). The dam height w divides the mountain area
into hills and valleys. Only the valley and valley underground
hold water, no water beneath the surface of the hill. The area
right beneath the surface of the hill is called dry zone; the
area right beneath the water table is called the water zone.
The dam has the maximum height P−1

w (ρmax) and the water
table has the maximum height ρmax. Hence, the virtual phase
is guaranteed to be a charging phase in our system.

Since an area on the time-power diagram represents an
amount of energy, the dry zone area corresponds to the energy
harvested into the battery, while the water zone area corre-
sponds to the energy consumed in sending data. Therefore, the
difference between the two zone areas is the remaining energy
R(T ). In Fig. 4, the green curve with its corresponding right
y-axis indicates the remaining energy in the battery, which
increases during the charging phase and decreases during the
sending phase.

The core of the dam raising system is to raise the dam height
from w = 0, and stop as soon as the dry zone area equals the
water zone area. Then the optimal dam height and the optimal
water table are found. At the very beginning, the entire area
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is a dry zone with no water zone. As the dam height is raised,
the dry zone shrinks horizontally, while the water zone grows
both horizontally and vertically. Hence, a unique dam height
can be found that equals the two zone areas. The dam raising
stops at this height.

For any Dam w HTT-schedule, it is easy to compute the
remaining energy R(t) at any time t ∈ [0, T ]. And R(t) is
illustrated by the green remaining energy curve on the dia-
gram in Fig. 4. Let a procedure is_shortage(ts, te, E0, w)
checks whether any part of the remaining energy curve in
duration [ts, te] goes below 0 which means energy shortage
and infeasible schedule, where E0 is the initial energy for
[ts, te], and w is the dam height. The procedure returns true
if there is any shortage, false if the schedule is feasible.
Obviously, the time complexity of this check is O(|te − ts|).
Hence, we want to find the highest dam height w such that
is_shortage(0, T, Einit, w) returns false.

In the formal algorithm, the process of dam raising can
be efficiently speeded up by bisection searching. Algorithm
dam_raising_shotg provides formal details.

A simple call to dam_raising_shotg(0, T, Einit) will
return the optimal dam height.

Theorem 4. Algorithm dam_raising_shotg(0, T, Einit)
computes the optimal HTT schedule, and time complexity of
the algorithm is O(T · log(ρmax

∆ )), where ∆ is the desired
accuracy.

Proof. See Appendix C.

V. THE OPTIMAL OFFLINE SOLUTION FOR GENERAL
HARVESTING POWER

The section focuses on the general harvesting power case
and extends results for the special case of the monotonically
decreasing harvesting power. Before we design the algorithm
that computes the optimal solution, we first present the fol-
lowing theorems on the optimal solution. It is not hard to see
that the following theorems are similar to those in the previous
section.

Theorem 5. For the general HTT-scheduling problem, when
the harvesting power p(t) is a general function, in the optimal
schedule, there exists a set of time τi, and the power level wi

for interval [τi−1, τi], in which (1) for any charging phase, we

Algorithm 1: dam_raising_shotg(ts, te, E0)

1 wlower = 0;
2 wupper = ρmax;
3 while wupper − wlower > ∆ do
4 w =

wupper+wlower

2 ;
5 if is_shortage(0, T, Einit, w)=false then
6 wlower = w
7 else
8 wupper = w
9 end

10 end
11 return w

have p(t) > wi, (2) for any sending phase, we have p(t) ≤
wi, 0 ≤ t ≤ T, i = 1, 2, . . . , n, unless p(t) monotonically
increases in [τi−1, τi]. The power level wi is called the dam
heights.

Proof. See Appendix D.

Lemma 3 (Expanding and shrinking). Suppose w and ρ are
the dam height and sending power in a sending phase. If
Pw(w) < ρ (Pw(w) > ρ) satisfies, then there exists an
operation that expands (shrinks) a sending phase via including
(excluding) a small duration at both ends while meeting the
following constraints.

• The operation doesn’t change the energy consumption.
• The operation doesn’t decrease the throughput.

Proof. See Appendix E.

Theorem 6. In any sending phase of the optimal HTT sched-
ule, the sending power is Pw(w), where w is the dam height
of the sending phase.

Proof. See Appendix. F

Due to the similarity between these theorems and the
theorems in the previous section, dam raising system can be
conveniently extended to the general p(t) function. Recall that
the dam height is raised slowly (so as the water table), and
the dam height stops rising once the dry zone area equals
the water zone area, which indicates the harvesting energy
is used up in sending data. The dam height and water table
are raised exactly the same way for the general p(t) function.
One of the differences is that there may be more than one
dry zone and more than one water zone. The dam height will
meet each valley in order when it rises. When the dam height
is raised, the total dry zone area grows, but the total water
zone area shrinks, e.g., Lemma 2 still holds. We stop when
the two areas are equal. We define such a revised algorithm
dam_raising_general. This algorithm is executed on the
part of the p(t) from Fig. 2, and the results are given in Fig. 5.

However, the biggest difference for the general p(t) function
is that it is not always possible that one dam height can make
the dry zone area be equal to the water zone area. If we
consider a longer p(t) function from Fig. 2, then the problem
arises. As in Fig. 6(a), since the dry zone in [t4, ta] is larger
than the following water zone, the total area of the dry zone
is larger than that of the water zone. We may want to raise the
dam to enlarge the charging zone and shrink the sending zone.
However, the raise is impossible, because we already have
the two zones equal before time t4, i.e., the green remaining
energy curve touches the x-axis at time t4. Note that although
R(t4) = 0, there is still a certain amount of energy at time t4
to keep the device functional which is not considered in the
dam raising system design. So there is no single dam height
for the entire duration [0, T ] such that the two zones before T
are equal.

In conclusion, throughout the entire duration [0, T ], the
optimal dam height does not necessarily stay unchanged.
Instead, it may change multiple times. Assume it changes at
time t = τi, i = 1, 2, · · · , n, and stays constant in all adjacent
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(a) The dam raising system for general harvesting power.
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(b) The dam is raised.

Fig. 5. The dam is raised in the dam raising system for general harvesting
power. (a) For general p(t), there are more than one dry zone and water
zones. However, all underground water is connected, so they share the same
water table in all valleys. (b) When the dam is raised, the water table rises
too. The dam raising will create new valleys and open new water zones. As
the dam height w grows larger, the green remaining energy curve increases
less but decreases in a larger slope, as a result, this curve generally becomes
lower in position. We stop raising once the green curve touches the x-axis
because that means the battery is energy-critical at the touch point.

cycles in [τi−1, τi) at wi. Now, the problem becomes how to
find all the dam height wi and the dam height changing points
τi, i = 1, 2, · · · , n.

Before we go any further with the algorithm, we first
investigate some optimality properties of the optimal dam
height.

Lemma 4. Any two distinct dam heights from two disjoint
durations can be equalized to transmit more data in these two
durations, unless infeasible solution results.

Proof. See Appendix G.

Lemma 5. The optimal dam height increases only.

Proof. See Appendix H.

Lemma 6. The optimal dam height increases at energy-
critical points.

Proof. See Appendix I.

The battery must be charged once it is energy-critical, the
following definitions state what is the energy-critical point and
how it is charged in the optimal solution.

Definition 5 (The energy-critical point). If at time point t the
energy in the battery available for transmitting the data is 0,
then the time point t is an energy-critical point.

Note that, at an energy-critical point, there is only a little
energy that keeps the device functional remains and there’s no
energy available for transmitting the data.

Immediately following an optimal energy-critical point,
there must be a charging phase with length at least length
∆t, where ∆t is the minimum time required for a device to
stay harvesting which is imposed by the hardware.

Definition 6 (The fast switching cycle and fast switching
period). A cycle is called the fast switching cycle if its
charging phase is with length ∆t, and the sending phase uses
up all the energy in the battery. Adjacent fast switching cycles
are called a fast switching period.

Note that an example of the optimal solution that satisfies all
the above Lemma 5, 6 and Definition 6 is given in Appendix J.

We are now ready to present the algorithm. The high level
idea is quite simple, we want to find the first dam height
changing point for the optimal dam height and after such a
point, the same problem repeats. According to Lemma 6, 1)
at such a point, the battery is energy-critical, and 2) before
such a point, there is a single dam height, and 3) after such
a point, the dam height increases. Hence, we find the largest
dam height w for the entire duration that is feasible with an
energy-critical point. We will prove later that such a point
is the first optimal dam height changing point, and the dam
height w is also optimal before such a point.

We can call the previously introduced dam_raising-
_shotg to directly return such a dam height w. Let the
procedure of finding the energy-critical point for w be find-
_emptyP(ts, te, E0, w), where [ts, te] is the duration in con-
sideration, E0 is the initial energy for such duration, and w is
the given dam height. The procedure returns the first energy-
critical point τ if it exists. Starting from τ , we charge the
battery for ∆t time, and charge

∫ τ+∆t

t=τ
p(t) dt energy into the

battery. The point τ +∆t will be treated as the new starting
point for the next iteration.

Algorithm Varying_Source_WPT computes all the
changing points and the dam heights.

Algorithm 2: Varying_Source_WPT
1 τ0 = 0, E0 = Einit;
2 while τ0 < T do
3 w=dam_raising_shotg(τ0, T, E0);
4 τ=find_emptyP(τ0, T, E0, w);
5 Set dam height w in [τ0, τ ];
6 τ0 = τ +∆t, E0 =

∫ τ+∆t

t=τ
p(t) dt;

7 end

Theorem 7. The algorithm Varying_Source_WPT com-
putes the optimal schedule for the offline problem, and the
time complexity of the algorithm is O(T 2 log(ρmax

∆ )/∆t).

Proof. See Appendix K.

An example of the execution of Algorithm Varying-
_Source_WPT is illustrated in Fig. 6. By line 3, we slowly
raise the dam height w and the corresponding water table
Pw(w).
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Fig. 6. The dam raising system may generate multiple dam heights. (a) The dam height is slowly raised to the highest position that is feasible. In such a
position, there must be an energy-critical point so that further raising will cause an energy shortage. The dam height before such a point is optimal. (b) Once
the battery is energy-critical (t4 at (a)), we charge the battery for ∆t time. Starting at this point, the same problem repeats. In this new problem, the remaining
energy curve will not touch the x-axis until the dam continues to be raised above p(t4). This is called the fast switching cycle. (c) A number of adjacent fast
switching cycles follow, and they are called the fast switching period. (d) When the dam continues to be raised above p(t6), the first energy-critical point
that appears is tend. Therefore, the fast switching period ended. (e) Full view of the fast switching period. The fast switching period begins at t4 and ends at
t6, and there are 2 fast switching cycles in the fast switching period: t4 ∼ t5 and t5 ∼ t6.

As the dam height w grows larger, the green remaining
energy curve increases less but decreases in a larger slope,
as a result, this curve generally becomes lower in position.
Once the dam height w is raised to a height that causes the
curve to touch the x-axis, we stop, because that means the
battery is energy-critical at the touch point. Line 3 returns this
height w and line 4 returns the time of the touch point τ . We
have proved such dam height is optimal. Note that, since the
battery is energy-critical at τ , according to Definition 6, we
set interval [τ, τ +∆t] to charge the battery, and the charged
energy E0 =

∫ τ+∆t

t=τ
p(t) dt. In Fig. 6(b), the remaining energy

curve will not touch the x-axis until the dam height continues
to rise above P (t4). Since the previous charging phase length
∆t is small, the initial energy E0 =

∫ τ+∆t

t=τ
p(t) dt is small,

so with a small sending phase, the curve touches x-axis, and
we stop. This is called the fast switching cycle, obviously,
there will be fast switches in this period among harvesting
and transmitting phases. The fast switching period may last
for a number of more cycles, like in Fig. 6(c). In Fig. 6(d),
when the dam continues to be raised above p(t6), the first
energy-critical point that appears is tend. Therefore, the fast
switching period ended. Fig. 6(d) gives a full view of the fast
switching period. The fast switching period starts from t4 and
ends at t6. There are 2 fast switching cycles in the period:
t4 ∼ t5 and t5 ∼ t6.

A more complicated example with three dam heights and
two fast switching periods is given in Appendix J.

VI. ONLINE ALGORITHM AND SIMULATIONS

In this section, we study the online HTT-scheduling prob-
lem, where the phase switching points and the transmission
power are determined based on the past and current harvesting
power, i.e., any p(t) is not known until time t. We propose
a heuristic algorithm, namely dam guided online algorithm,
which is based on the optimal properties obtained from the
offline problem. We then provide some basic theoretical anal-
ysis of this online algorithm. Finally, performance evaluation is
conducted by comparisons with the optimal offline solutions.

A. Online Algorithm

The core idea of dam guided online algorithm is to use the
history average harvesting power to anticipate any unknown
further harvesting power and compute the next charging-
sending cycle based on the current harvesting power. Mean-
while, we do not want the next cycle to last too long, because
harvesting power is time-varying and we have no future
information. We want the cycle to be as short as possible.

More specifically, assume at the current time t, the charging
power is p and the battery energy is Er, while the history
average charging power is p̄. Suppose l1, l2, and ρ are the
lengths of the charging phase, sending phase, and the sending
power respectively, which are to be determined by the online
algorithm.

A total of (l1 + l2)p̄ energy is expected to be harvested on
average in the next cycle if both phases are used for charging.
If we set the sending power to be Pw(p̄) in the second phase,
then compared with the both phase charging case, this sending
phase not only costs l2Pw(p̄) energy in sending data, but also
costs l2p̄ energy less charged into the battery. Therefore, the
remaining energy is (l1 + l2)p̄ − (l2Pw(p̄) + l2p̄) = l1p̄ −
l2Pw(p̄), i.e., the sum of both cost should be deducted.

As long as l1 and l2 are small enough, we can treat
harvesting power as a constant, which is p. Then, the sending
phase with length l2 costs l2Pw(p̄)+l2p energy loss, including
l2Pw(p̄) energy consumed and l2p energy less charged. We
want the energy loss to equal to the expected energy harvest-
ing, e.g., (l1+l2)p̄ = l2(Pw(p̄)+p) because the energy charged
and energy consumed should equal in a long run. Therefore,
l1 and l2 satisfies

l2
l1 + l2

=
p̄

p+ Pw(p̄)
. (12)

Obviously, only if p̄
p+Pw(p̄) < 1, then l1 > 0. Hence, we set

l1 = 0 and l2 = ∆t when p̄
p+Pw(p̄) ≥ 1. When 1

2 < l2
l1+l2

< 1,
l1 is smaller than l2, we hence set t1 = ∆t and compute
l2 accordingly, l2 = p̄

p+Pw(p̄)−p̄∆t. When l2
l1+l2

≤ 1
2 , l2 is
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TABLE I
SUMMARY OF ONLINE SETTINGS TO l1 AND l2

p̄
p+Pw(p̄)

≥ 1 1
2
< p̄

p+Pw(p̄)
< 1 p̄

p+Pw(p̄)
≤ 1

2

l1 0 ∆t
p+Pw(p̄)−p̄

p̄
∆t

l2 ∆t p̄
p+Pw(p̄)−p̄

∆t ∆t

smaller, hence we set l2 = ∆t and l1 = p+Pw(p̄)−p̄
p̄ ∆t. These

settings to l1 and l2 are summarized in Table I.
The Algorithm dam_guided_online presents the de-

tailed pseudo code.

B. The Basic Theoretical Analysis

The general idea of our basic theoretical analysis is, we
take two general intervals and analysis the throughput and
energy usage within both intervals. Assume the time-varying
harvesting power function p(t), 0 ≤ t ≤ T has the average
power at p̄, then the two taken intervals must also average
to p̄, otherwise, they are not general enough. Let them be
called interval x and interval y, both with length L. If x and
y both have harvesting powers equal to p̄, then it is quite
straightforward to check that the proposed online algorithm
produces a solution with throughput equal to the offline
optimal solution.

We therefore focus on the cases when harvesting power in
the two intervals varies. Assume p(t) is bounded by pmin ≤
p(t) ≤ pmax, 0 ≤ t ≤ T , and pmin = (1 − γ)p̄ and pmax =
(1 + γ)p̄, where γ represents the deviation of variation. We
study the case where the two taken intervals have the largest
variation deviation of p(t) because the throughput and energy
usage are affected the most. Without loss of generality, we
assume the harvesting power p = (1 − γ)p̄ in interval x and
p = (1 + γ)p̄ in interval y, and x is before y. We will show
next the throughput and energy usage differences between a

Algorithm 3: dam_guided_online(Er, t, p)

1 Update the average harvesting power p̄;
2 if p+Pw(p̄)

p̄ ≤ 1 then
3 l1 = 0;
4 l2 = ∆t;
5 else if 1 < p+Pw(p̄)

p̄ ≤ 2 then
6 l1 = ∆t;
7 l2 = p̄

p+Pw(p̄)−p̄∆t;

8 else if 2 < p+Pw(p̄)
p̄ then

9 l1 = p+Pw(p̄)−p̄
p̄ ∆t;

10 l2 = ∆t;
11 end
12 if Er + l1p− l2Pw(p̄) < 0 then
13 l2 = 0;
14 end
15 Set charging phase [t, t+ l1);
16 Set sending phase [t+ l1, t+ l1 + l2), and sending

power Pw(p̄);

simple offline solution and the online solution by the proposed
online algorithm.

Assume in an offline solution, all energy harvested is used
up in x and y, respectively, that is

Eoff = 0.

Then, according to the constant harvesting power analysis in
Section III and Eq. (7), we have the throughput for this offline
solution as follows,

Boff = (1− γ)p̄L
log(1 + Pw((1− γ)p̄))

(1− γ)p̄+ Pw((1− γ)p̄)

+ (1 + γ)p̄L
log(1 + Pw((1 + γ)p̄))

(1 + γ)p̄+ Pw((1 + γ)p̄)
. (13)

Since function Bon(p) = pL log(1+Pw(p))
p+Pw(p) is a concave func-

tion, so according to Jensen’s inequality, we have

Boff ≤ 2p̄L
log(1 + Pw(p̄))

p̄+ Pw(p̄)
. (14)

We now study the throughput and energy usage of the online
solution produced by the proposed online algorithm. Since the
online algorithm produces cycles with very small lengths, we
first investigate the length percentage of both phases. Since the
sending phase length percentage has already been presented
in Eq. (12), the charging phase length percentage is therefore

l1
l1+l2

= 1− p̄
p+Pw(p̄) . Therefore, we have

lx1
lx1 + lx2

= 1− p̄

(1− γ)p̄+ Pw(p̄)
, lx1 + lx2 = L

ly1
ly1 + ly2

= 1− p̄

(1 + γ)p̄+ Pw(p̄)
, ly1 + ly2 = L

Therefore,

lx2 =
p̄

(1− γ)p̄+ Pw(p̄)
L

ly2 =
p̄

(1 + γ)p̄+ Pw(p̄)
L

The throughput of the solution by our online algorithm is the
sum of all data sent in every sending phase in both intervals
x and interval y.

Bon =lx2 log(1 + Pw(p̄)) + ly2 log(1 + Pw(p̄))

=
p̄

(1− γ)p̄+ Pw(p̄)
L log(1 + Pw(p̄))

+
p̄

(1 + γ)p̄+ Pw(p̄)
L log(1 + Pw(p̄)).

Since function Boff (p) = p̄L log(1+Pw(p̄))
p+Pw(p̄) is a concave

function, so

Bon ≥ 2p̄L
log(1 + Pw(p̄))

p̄+ Pw(p̄)
. (15)

Therefore,
Bon ≥ Boff . (16)
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Fig. 7. The achieved throughput by the online algorithm to the offline optimal throughput. The default setting is total time T = 150s, the mean harvesting
power p̂ = 0.22W, and the harvesting power deviation γ = 0.5. In (a), the total time slot T varies from 25s to 175s, with a step of 25s. In (b), the mean
harvesting power p̂ varies from 0.04W to 0.4W with a step of 0.06W. In (c), the harvesting power deviation γ varies from 0.1 to 0.7 with a step of 0.1.

The energy harvested into the system by our online algo-
rithm in charging phases of both x and y is

Eon
in =(1− p̄

(1− γ)p̄+ Pw(p̄)
)L(1− γ)p̄

+ (1− p̄

(1 + γ)p̄+ Pw(p̄)
)L(1 + γ)p̄

=Lp̄(
(1− γ)(1− γ p̄

Pw(p̄) )

(1− γ) p̄
Pw(p̄) + 1

+
(1 + γ)(1 + γ p̄

Pw(p̄) )

(1 + γ) p̄
Pw(p̄) + 1

).

The energy consumed in the sending phases of both intervals
is

Eon
out =

p̄

(1− γ)p̄+ Pw(p̄)
LPw(p̄)

+
p̄

(1 + γ)p̄+ Pw(p̄)
LPw(p̄)

=Lp̄(
1

(1− γ) p̄
Pw(p̄) + 1

+
1

(1 + γ) p̄
Pw(p̄) + 1

).

So,

Eon =Eon
in − Eon

out = Lp̄(
−γ − γ p̄

Pw(p̄) + γ2 p̄
Pw(p̄)

(1− γ) p̄
Pw(p̄) + 1

+
γ + γ p̄

Pw(p̄) + γ2 p̄
Pw(p̄)

(1 + γ) p̄
Pw(p̄) + 1

) = 0 = Eoff .

In conclusion, our online algorithm produces a solution that
delivers more data than a simple offline solution using the
same amount of energy, i.e., Bon ≥ Boff and Eon = Eoff .
Besides, if the harvesting power p(t) is a constant and not
allowed to change, i.e., γ = 0, then our online algorithm
generates exactly the same solution as the offline optimal
solution, i.e., Bon = Boff .

C. Simulations

In this subsection, the proposed dam_guided_online
algorithm is implemented and its efficiency is investigated
through simulations. In this evaluation, we compare the per-
formance of the proposed online algorithm against the optimal
offline solution. We also compare the performance of the
proposed algorithm against the time-sharing algorithm. Note
that the throughput of the optimal offline solution is the upper

bound any online algorithm can ever achieve. A desired online
solution is very close to the optimal offline solution.

In simulations, we assume there exists some small time
interval length, in which the harvesting power does not change.
We call such a small time interval a time slot. A total of T
time slots are considered in evaluating the proposed algorithm,
by default T = 150s. For all time slots, the harvesting power
is assumed to be a random variable following the uniform
distribution U((1 − γ)p̂, (1 + γ)p̂), with the default mean
harvesting power p̂ = 0.22W, and default harvesting power
deviation γ = 0.5.

In this simulation, we change the total time slot T , the
mean harvesting power p̂, and the harvesting power deviation
γ, one at a time, to evaluate their impact on the algorithm
performance, as in [27]. Each value shown in the figures of
this section is the mean value of simulation results from 20
random instances, and in each instance, a total of T harvesting
powers are generated according to the above model.

The ratio that the online algorithm achieves the offline max-
imum throughput is illustrated in Fig. 7, where the throughput
of our online algorithm is compared to the offline optimal
solution that maximizes the throughput.

In Fig. 7(a), the total time slot T varies from 25s to 175s,
with a step of 25s. We can see that as the total time T
increase, the throughput increases as well. Meanwhile, the
larger the total time slots, the better our online algorithm
performance. This is because the heart of our online algorithm
is to accurately anticipate future powers, and we use the
history average harvesting power. For more time slots, the
more accurate the history average is in prediction. However,
even if the total time slot is only 25s, the achieved ratio is
nearly 88%, and for larger total time, the achieved ratio is
around 92%.

In Fig. 7(b), the mean harvesting power p̂ varies from
0.04W to 0.4W with a step of 0.06W. We can see that both
the throughput and the efficiency of the proposed algorithm
increase as the mean harvesting power p̂ increases. This is
because when p̂ goes smaller, more time is needed to harvest
the same amount of energy. As a result, more difficulty
should be faced for our heuristic algorithm to achieve a good
throughput, so its efficiency drops. However, in all tested cases,
the achieved ratio stays higher than 85%.
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Fig. 8. The achieved throughput by the time-sharing algorithm (α = 0.1,
α = 0.3, α = 0.5), proposed online algorithm and proposed offline algorithm.
The default setting is total time T = 150s and the harvesting power deviation
γ = 0.5. The mean harvesting power p̂ varies from 0.04W to 0.4W with a
step of 0.06W.

In Fig. 7(c), the harvesting power deviation γ varies from
0.1 to 0.7 with a step of 0.1. The throughput of our online
algorithm stays approximately the same while the offline al-
gorithm increases as the deviation γ increases. This is because
the larger the deviation, the more difficult it is to predict the
further harvesting power. Therefore, our method based on the
historical average becomes less efficient. However, we can see
from the figure that even if the deviation is as high as 0.7, our
online algorithm can achieve around 90% ratio.

The comparison of the proposed online and offline algo-
rithm between time-sharing algorithm is illustrated in Fig. 8,
where the mean harvesting power p̂ varies from 0.04W to
0.4W with a step of 0.06W. The time-sharing algorithm is
borrowed from [28], which simply divides each time slot
into the harvesting period and sending period. The ratio of
harvesting period to time slot is α. We here compared the
throughput of the time-sharing algorithm and the optimal
online and offline algorithm we proposed. We can see from
the figure that in every situation, our algorithm achieved higher
throughput than the time-sharing algorithm.

As a conclusion of the simulation, the proposed online
algorithm is efficient and achieves more than 90% of the
offline maximum throughput in most tested cases. Both the
online algorithm and offline algorithm overcome the time-
sharing algorithm.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we first formulated the throughput maximiza-
tion HTT-scheduling problem for the time-varying RF energy
harvesting systems. Then the wopt power was introduced,
which is with a basic but important property. Based on this
property, we introduced the concept of the dam height. We
then investigated a special case of the problem, e.g., the har-
vesting power is monotonically decreasing. Some optimality
properties were observed, and the dam raising system was
designed to solve the special case problem. These properties
and the dam raising system were then extended to the general
scenario, where the harvesting power can change dynamically.
Finally, an online heuristic algorithm was proposed and sim-
ulations were conducted to evaluate its efficiency.

Our future work will focus on extending the system model
and optimization framework to scenarios involving multiple

wireless transmitters and receivers. This direction will address
interference and distributed resource allocation in networked
environments, thereby broadening the applicability of our
results to more realistic deployment conditions.

APPENDIX

A. Proof of Theorem 2

Actually, Theorem 2 is a special case of Theorem 5 when
the p(t) is monotonically decreasing. Therefore, we will prove
Theorem 2 briefly, focusing our main efforts on the proof of
Theorem 5.

Theorem 2 can be succinctly summarized in the following
point: there is a dam height w, such that higher harvesting
power duration harvests energy and lower power duration
transmits data. This is because, otherwise, we can identify
a very small charging interval [a, a+δ] and a sending interval
[b, b + δ] with an equal length such that function p(t) at any
point in [a, a + δ] is smaller than the function at any point
in [b, b+ δ]. Because the harvesting power p(t) is decreasing,
we must have the charging interval [a, a+ δ] after the sending
interval [b, b + δ]. Then, we can swap the two operations for
the two intervals. By doing so, we move to charge the battery
earlier and larger, therefore the throughput can be increased
in the sending phase.

B. Proof of Theorem 3

Actually, Theorem 3 is a special case of Theorem 6 when
the p(t) is monotonically decreasing. Therefore, we will
therefore prove Theorem 3 briefly, focusing our main efforts
on the proof of Theorem 6.

Theorem 3 can be succinctly summarized in the following
point: the sending power is Pw(w) in any sending phase,
where w is the dam height that distinguishes charging phases
from sending phases. Because the harvesting power p(t)
decreases, there is only one (energy harvesting, data transmis-
sion) cycle, i.e., one charging phase and one sending phase.
Suppose t1 is the phase switching point, then p(t1) = w.
Since p(t) is a continuous function, we can treat the harvesting
power in [t1 − δ, t1 + δ] as a constant w, as long as δ is
small enough. If the sending power Pw(w) < ρ (Pw(w) > ρ),
then, by Lemma 3, interval [t1 − δ, t1] ([t1, t1 + δ]) can be
included into (excluded from) the only sending phase, to
improve the throughput. Hence, we must have the sending
power ρ = Pw(w).

C. Proof of Theorem 4

First, we prove that the algorithm can compute the optimal
HTT schedule of decreasing harvesting power. From Lemma 2
we could know that as dam height increases, the throughput
monotonically increases and the remaining energy mono-
tonically decreases. Thus, the HTT schedule of decreasing
harvesting power is monotonic. Since monotonic problems can
definitely be solved using bisection method, the algorithm can
give optimal HTT schedule of decreasing harvesting power.

Next, we prove that the algorithm has a time complexity
of O(T · log(ρmax

∆ )). When the algorithm returns at Line 11,
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we must have wupper − wlower < ∆. We know that after
each iteration, the value wupper − wlower is reduced to its
half. Therefore, after n iterations, we have wupper−wlower =
1
2nwmax. Therefore, when the algorithm returns at Line 11,
we have 1

2nwmax < ∆, which could be equivalently written
as n > log2(

wmax

∆ ). Note that in each iteration, we invoke
is_shortage for O(T ) times. So, the overall time com-
plexity is O(T · log(ρmax

∆ )).

D. Proof of Theorem 5

We prove this theorem by contradiction. In the optimal
schedule, assume, for contradictory, there does not exist time
τi and power level wi for interval [τi−1, τi] such that in the
interval any charging phase has p(t) > wi and any sending
phase has p(t) ≤ wi, then, we claim there is at least one
sending phase has different p(t) on its both ends. The core
idea of our method is to show such a schedule can be further
improved, contradicting to its optimality assumption.

There are only two situations where the p(t) on both ends of
the sending phase are not equal: the right end is higher, or the
left end is higher. Let’s call the situation where the right end
is higher the “left low, right high” and the situation where the
left end is higher the “left high, right low”, which are shown
in Fig. 9 and 10.

We first consider the “left low, right high” situation, which
is shown in Fig. 9(a). Suppose the sending phase is t1 ∼ t2 and
p(t1) < p(t2) and the sending power is ρ. Suppose E(t2) = C,
where C is a constant and C ≥ 0. Therefore, we have:

E(t0) +

∫ t1

t0

p(t) dt− ρ(t2 − t1) = C. (17)

The first step is to move t1 and t2 forward, which is shown
in Fig. 9(b). We move t1 and t2 forward to t3 and t4. In
this process we keep E(t4) = C, until we find a pair of
(t3, t4) such that p(t3) = p(t4). We could always find (t3, t4),
unless t3 touches the start point, which turned out to be a fast-
switching cycle. Note that the sending power is still ρ here.
Because t1 = t3+(t1− t3), Eq. (17) could also be written as:

E(t0) +

∫ t3

t0

p(t) dt+

∫ t1

t3

p(t) dt− ρ(t2 − t1) = C. (18)

The second step is to find t5, which is shown in Fig. 9(c).
We need to find t5 between t4 and t2 such that E(tN ) remains
the same because E(tN ) is different between Fig. 9(a) and
Fig. 9(b). Therefore, we have:

E(t0)+

∫ t3

t0

p(t) dt+

∫ t5

t4

p(t) dt−ρ(t4−t3)−ρ(t2−t5) = C.

(19)
Subtract Eq. (18) from Eq. (19) and we have:∫ t5

t4

p(t) dt−
∫ t1

t3

p(t) dt = ρ(t1 − t3)− ρ(t5 − t4). (20)

We claim that t5−t4 must no greater than t1−t3. Otherwise,
we will find that, comparing Fig. 9(a) with Fig. 9(c), more
energy is charged and less energy is used, however, the
remaining energy stays the same, which is a contradiction.
The details of the proof are as follows:
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Fig. 9. The process of improving the throughput of the “left low, right high”
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Fig. 10. The process of improving the throughput of the “left high, right low”
situation.

Suppose t5 − t4 > t1 − t3. Add t2 on both sides so

t2 + t5 − t4 > t2 + t1 − t3.

Move t5 − t4 and t1 to opposite side, and we have

t2 − t1 > t2 − t5 + t4 − t3.

The left part of the inequality is the length of the sending
phase in Fig. 9(a) and the right part is the length of sending
phases in Fig. 9(c). Note that the sending power is always ρ.
Therefore, the energy used to send in Fig. 9(a) is larger than
that in Fig. 9(c).

Meanwhile, from Fig. 9(c) we could find that p(t) is larger
in t4 ∼ t5 than that in t3 ∼ t1. Note that t5−t4 is also greater
than t1 − t3. Therefore, we have∫ t5

t4

p(t) dt >

∫ t1

t3

p(t) dt

Add
∫ t3
t0

p(t) dt on both sides, and we get:∫ t3

t0

p(t) dt+

∫ t5

t4

p(t) dt >

∫ t3

t0

p(t) dt+

∫ t1

t3

p(t) dt

which could be also written as∫ t3

t0

p(t) dt+

∫ t5

t4

p(t) dt >

∫ t1

t0

p(t) dt.

The right part of the inequality is the harvested energy in
Fig. 9(a) and the left part is the harvested energy in Fig. 9(c).
Therefore, the energy harvested in Fig. 9(a) is less than that
in Fig. 9(c). Therefore, the relationship of harvested energy
between Fig. 9(a) and Fig. 9(c) contradicts the relationship
of sending-used energy between Fig. 9(a) and Fig. 9(c).
Therefore, t5 − t4 must no greater than t1 − t3.

Add t2 on both sides of t5 − t4 ≤ t1 − t3, and we have

t2 + t5 − t4 ≤ t2 + t1 − t3.

Move t5 − t4 and t1 to opposite side, and we have

t2 − t1 ≤ t2 − t5 + t4 − t3.
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The left part of the inequality is the length of the sending phase
in Fig. 9(a) and the right part is the length of the sending
phases in Fig. 9(c). Note that the sending power is always
ρ. Therefore, the sending rate is always a constant, which is
log(1 + ρ). Therefore, the throughput in Fig. 9(c) is no less
than that in Fig. 9(a). Therefore, we improved the throughput
of the “left low, right high” situation.

Next, we consider the “left high, right low” situation, which
is shown in Fig. 10(a). Suppose the sending phase is t1 ∼
t2, p(t1) > p(t2), and sending power is ρ. We continuously
perform the following operations until p(t1) = p(t2).

First, we select a short interval of δ after t1 and t2, which
is shown in Fig. 10(b). δ must satisfy the following condition:
every p(t) in t1 ∼ t1 + δ must be greater than that in t2 ∼
t2 + δ. Therefore, we have:∫ t1+δ

t1

p(t) dt >

∫ t2+δ

t2

p(t) dt.

That is to say, the harvested energy in t1 ∼ t1+δ is larger than
that in t2 ∼ t2+δ. Then we swap these two intervals, which is
shown in Fig. 10(c). Swapping is always feasible. Because by
swapping, we first harvest and then send. After swapping, the
remaining energy at t2 + δ should be larger than 0 because
the harvested energy in t1 ∼ t1 + δ is larger than that in
t2 ∼ t2 + δ. The excess remaining energy could be used to
increase sending power in the sending phase. Therefore, the
throughput could be improved.

By continuously perform these operations, p(t1) will even-
tually equal to p(t2). Therefore, we improved the throughput
of the “left high, right low” situation.

Therefore, the p(t) on both ends of the sending phase should
be the same, otherwise, we can always improve.

E. Proof of Lemma 3

Here we draw Fig. 11 to show how we expand and shrink.
Below we prove the existence of the operation.

We first consider the situation of shrinking, which is shown
in Fig. 11(a). Suppose the original dam height is w. Therefore,
according to Eq. (8), the optimal sending power is Pw(w).
Suppose the actually sending power is ρ, and Pw(w) > ρ.

Assume we exclude a small duration of δ1 at the beginning
and exclude δ2 at the end. Note that after we shrink, both ends
are still at the same height w′. Here we use E1 to represent
the energy consumed in the sending period before we shrink
and E2 represents that after we shrink. Therefore, we have

E1 = −ρl

E2 =

∫
δ1

p(t) dt+

∫
δ2

p(t) dt− (l − δ1 − δ2)Pw(w
′)

Assume ∆E is the difference of energy consumption between
the schedules before and after we shrink. Therefore, we have:

∆E = E2 − E1

=

∫
δ1

p(t) dt+

∫
δ2

p(t) dt+ (lρ− (l − δ1 − δ2)Pw(w
′)).
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Fig. 11. If actually sending power ρ is smaller (larger) than the optimal
sending power Pw(w), we can expand (shrink) the sending phase to improve
the solution.

When δ1 + δ2 = l, we have:

∆E =

∫
δ1

p(t) dt+

∫
δ2

p(t) dt+ ρl > 0.

When δ1 + δ2 = 0, which means w = w′, we have:

∆E = l(ρ− Pw(w
′)) = l(ρ− Pw(w)) < 0.

Note that ∆E is a continuous function of δ1 and δ2. Therefore,
according to Bolzano’s Theorem there exists a pair of (δ1, δ2)
which let ∆E = 0. Therefore, there exists an operation that
meets the first constraint.

Next, we prove this operation meets the second constraint,
which means the operation doesn’t decrease the throughput.
Compared with the case before we shrink, the harvested energy
that can be used in sending is

∫
δ1
p(t) dt +

∫
δ2
p(t) dt more.

Let δ = δ1 + δ2 and ρ′ = Pw(w
′). Note that∫

δ1

p(t) dt+

∫
δ2

p(t) dt > w′(δ1 + δ2) = w′δ.

Let’s ignore the difference between
∫
δ1
p(t) dt +

∫
δ2
p(t) dt

and w′δ, because if we don’t decrease throughput with less
energy, we won’t decrease the throughput with more energy.

Suppose we used E energy before we shrink. We have E+
w′l = ρl + w′l, hence l = E+w′l

w′+ρ , and therefore

B = (E + w′l)
log(1 + ρ)

w′ + ρ
. (21)

After we shrink, we have

ρ′(l − δ) = E + w′δ.
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Fig. 12. The process of improving throughput while not increasing energy consumption. (a) A common situation where has two different dam heights. (b)
The balance operation. (c) The shrinking and expanding operation.

We have (w′ + ρ′)(l − δ) = E + w′δ − w′δ + w′l, hence
l − δ = E+w′l

w′+ρ′ , and therefore

B′ = (E + w′l)
log(1 + ρ′)

w′ + ρ′
. (22)

By treating ρ as a variable, the throughput is a function of ρ.
Through the analysis of Eq. (7) and the Fig. 3, we can easily
conclude that when Pw(w

′) > ρ′ ≥ ρ, we have B′ ≥ B.
Therefore, this operation meets the second constraint.

The proof of expanding is the same as shrinking, which will
not be further elaborated here.

F. Proof of Theorem 6

We will use Lemma 3 (Expanding and shrinking) to prove
Theorem 6 here. Suppose there is a sending phase in the
optimal HTT schedule where sending power ρ is not Pw(w).
w is the dam height of the sending phase. According to
Lemma 3, the shrinking(expanding) doesn’t change the energy
consumption. Moreover, the shrinking(expanding) will not
decrease the throughput. Therefore, we could apply shrink-
ing(expanding) on the sending phase. And the throughput after
we apply shrinking(expanding) will be no less than that before.
Therefore, we improved the optimal HTT schedule, which is a
contradiction. Therefore, in each sending phase of the optimal
HTT schedule, the sending power should be Pw(w), where w
is the dam height of the sending phase.

G. Proof of Lemma 4

Consider a common situation shown in the Fig. 12(a).
Assume there are two sending phases. The dam heights and
sending power of these two sending phases are w1, w2

and Pw(w1), Pw(w2). Note that w1 ̸= w2. By performing
the following operations, we could improve the throughput
without increasing energy consumption.

First we balance the sending power of two sending phases,
which is shown in Fig. 12(b). Suppose the lengths of two
sending phases are l1 and l2. For the sake of convenience in our
proof, let ρ1 = Pw(w1), ρ2 = Pw(w2) and denote ρ3 as the
balanced sending power. The premise of the balance operation
is not to increase energy consumption, which means the areas
of sending phases are equal in Fig. 12(a) and Fig. 12(b). Thus,

ρ1l1 + ρ2l2 = ρ3(l1 + l2).

Therefore,

ρ3 =
ρ1l1 + ρ2l2
l1 + l2

. (23)

Before we perform the balance operation, the throughput is
l1 log(1+ρ1)+ l2 log(1+ρ2). After we perform the operation,
the throughput is (l1+l2) log(1+ρ3). Because the concavity of
the power-rate function, we could use the Jensen’s inequality.
Thus, we have

l1 log(1 + ρ1) + l2 log(1 + ρ2)

l1 + l2
< log(1 +

ρ1l1 + ρ2l2
l1 + l2

).

(24)
By substituting Eq. (23) into Eq. (24), we can get

l1 log(1 + ρ1) + l2 log(1 + ρ2) < (l1 + l2) log(1 + ρ3). (25)

Note that the left part of Eq. (25) is the throughput before the
operation and the right part is the throughput after the opera-
tion. Therefore, the balance operation improves the throughput
without increasing energy consumption.

Next, we perform shrinking and expanding operations in
two sending phases. According to the Lemma 3, both the
shrinking and expanding operations do not increase the energy
consumption and both the operations do not decrease the
throughput. Therefore, the throughput is improved without
increasing energy consumption after we perform these two
operations in the sending phases.

Note that after performing operations shown in Fig. 12(b)
and Fig. 12(c), the difference between w1 and w2 decreased.
This is because the shrinking(expanding) operation shortened
the length of the left(right) sending phase. Therefore, the
dam height of the left(right) sending phase in Fig. 12(c)
decreased(increased) compared with Fig. 12(a). Thus, the
difference between w1 and w2 decreased.

By continuously performing operations in Fig. 12(b) and
Fig. 12(c), the dam heights of the two sending phases will
eventually reach the same height. In this process, the through-
put was improved while the energy consumption was not
increased.

H. Proof of Lemma 5

Suppose otherwise, the optimal dam height decreases at
time instance τi, from wi to wi+1, while wi > wi+1. We can
apply Lemma 4 to find a shared dam height w for [τi−1, τi+1).
Switch to use w is always feasible because wi > w > wi+1,
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(b) τopt1 < τ . After raising the dam, we need to reach τ with
a higher dam height according to Lemma 5. However, this is
impossible.

Fig. 13. If τopt1 ̸= τ , then there are two cases: τopt1 > τ and τopt1 < τ .

which means some energy originally used before τi is now
saved in battery and used after τi. However, according to
Lemma 4, the new dam height transmits more data using the
same amount of energy. This is a contradiction.

I. Proof of Lemma 6

Suppose otherwise, the optimal dam height increases at time
instance τi, but R(ti) > 0. By Lemma 4, we can increase
wi and decrease wi+1 to improve data transmission using the
same amount of energy before τi+1. As long as R(ti) ≥ 0 after
the modification, there is no violation of the battery constraint,
which is a contradiction.

J. An example of the optimal solution

An example of the optimal solution that satisfy Lemma 5,
6, and Definition 6 is given in Fig. 14.

K. Proof of Theorem 7

First, we prove that the algorithm can compute the optimal
HTT schedule for the offline problem. In every iteration of the
while loop, the same problem repeats, that is starting from τ0,
find the next optimal changing point and the corresponding
dam height. We, therefore, need only to show that in the first
iteration, where τ0 = 0, the dam height w and changing time
τ are optimally set in Line 5, i.e., τopt1 = τ and wopt

1 = w.
Here we prove it by employing proof by contradiction.

Suppose, on the contrary, the first optimal changing point
τopt1 ̸= τ , where τ is returned by find_emptyP. We then
have the following two cases: (1) τopt1 > τ and (2) τopt1 < τ .

Case τopt1 > τ , illustrated in Fig. 13(a). We must have
wopt

1 < w because the dam height w already makes the battery
energy-critical at τ , we have to lower the dam to make the
energy-critical at τopt1 . Since w returned by dam_raising-
_shotg is the highest feasible dam height position w and the
battery is energy-critical at time τ for the first time, then, for
dam height lower than w, there doesn’t exist energy-critical
point. Then, it is impossible to have a single dam height that
can make the battery energy-critical at any time t > τ .

Case τopt1 < τ , illustrated in Fig. 13(b). We must have
wopt

1 > w because the dam height w does not make the
battery energy-critical at any time t < τ , we have to raise
the dam to make the energy-critical at τopt1 . We claim that
in the optimal dam heights, there is at least one dam height
wopt

i in (or partially in) duration [τopt1 , τ), such that wopt
i < w.

Otherwise, optimal dam heights in [0, τ) are all greater than
w, contradicting the fact that w depletes battery at τ . This is
a contradiction to Lemma 5.

Therefore, the first optimal changing point τopt1 = τ . In this
way, the size of the problem becomes smaller. By using the
proof again, we can show that the algorithm can compute the
optimal HTT schedule for the offline problem.

Next, we prove that the algorithm has a time complexity
of O(T 2 log(ρmax

∆ )/∆t). From Theorem 4 we could know
that the algorithm dam_raising_shotg has a time com-
plexity of O(T · log(ρmax

∆ )). In every while loop, we at
least let τ0 increase ∆t. Because the worst situation is that
we couldn’t raise the dam, therefore, τ = τ0. In the worst
situation we assign τ + ∆t to τ0, that is, let τ0 increase ∆t.
Therefore, in every while loop, we at least let τ0 increase
∆t. As a result, the while loop will at most run T/∆t times.
In every while loop, we will run dam_raising_shotg
once and its time complexity is O(T · log(ρmax

∆ )). We
also run find_emptyP once and its time complexity is
O(T ). Therefore, the time complexity of each while loop
is max(O(T · log(ρmax

∆ )), O(T )) = O(T · log(ρmax

∆ )). Note
that we just proved that the while loop will at most run
T/∆t times. Therefore, the algorithm has a time complexity
of O(T/∆t · T · log(ρmax

∆ )) = O(T 2 log(ρmax

∆ )/∆t).
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