
1

Energy-Efficient General PoI-Visiting by UAV
with a Practical Flight Energy Model

Feng Shan, Member, IEEE, Jianping Huang, Runqun Xiong, Member, IEEE, Fang Dong, Member, IEEE,

Junzhou Luo, Member, IEEE, and Suyang Wang, Member, IEEE,

Abstract—Unmanned aerial vehicles (UAVs) are being widely exploited for various applications, e.g., traversing to collect data from

ground sensors, patrolling to monitor key facilities, moving to aid mobile edge computing. We summarize these UAV applications and

formulate a problem, namely the general waypoint-based PoI-visiting problem. Since energy is critical due to the limited onboard

storage capacity, we aim at minimizing flight energy consumption. In our problem, we pay special attention to the energy consumption

for turning and switching operations on flight planning, which are usually ignored in the literature but play an important role in practical

UAV flights according to our real-world measurement experiments. We propose specially designed graph parts to model the turning

and switching cost and thus transfer the problem into a classic graph problem, i.e., general traveling salesman problem, which can be

efficiently solved. Theoretical analysis shows that such problem transformation has the graph redefinition approximation ratio upper

bound, max{Θ/δ, 2}, where Θ is related to the designed graph parts and δ is a constant. Finally, we evaluate our proposed algorithm

by simulations. The results show that it costs less than 107% of the optimal minimum energy consumption for small scale problems and

costs only 50% as much energy as a naive algorithm for large scale problems.

Index Terms—Unmanned Aerial Vehicle, Energy Efficient, Path Planning, Graph Theory

✦

1 INTRODUCTION

U NMANNED aerial vehicles (UAVs), especially rotor-wing

UAVs, are becoming increasingly popular because they are

more and more affordable. They are being exploited widespreadly

for various applications, e.g., traversing to collect data from

ground sensors [1]–[8], patrolling to monitor key ground facilities

[9]–[13], moving to aid ground mobile edge computing [14]–[18].

Compared with traditional ground robots [19], which have to avoid

countless obstacles or otherwise restricted to given routes (road or

rail), UAVs are more agile and flexible in mobility.

UAV flight planning plays an important role in these UAV-

aided applications. We discover that automatic flight planning is

mostly implemented by waypoints, for both community-supported

open-source UAVs [20] and commercial closed-source UAVs [21].

This is because waypoint-based path planning is quite simple yet

robust, hence supported by almost every programmable UAV. In

other words, modern rotor-wing UAVs plan their route by a serial

of waypoints, which is a location where UAVs stop and make

turns. Therefore, waypoints divide the flight route into a serial of

straight line path segments, where a UAV accelerates, maintains

the cruise speed, and decelerates.

By investigating the UAV flight planning for popular UAV

applications, such as data collection, surveillance and monitor,

• F. Shan, R. Xiong, F. Dong, and J. Luo are with School of Computer

Science and Engineering, Southeast University, Nanjing 210096, Jiangsu,

P. R. China (Emails: {shanfeng, rxiong, fdong, jluo}@seu.edu.cn)

• J. Huang is with Huawei Technologies Co. Ltd, Nanjing 210012, Jiangsu,

P. R. China. (Email:huangjianping12@huawei.com).

• S. Wang is with School of Computer Science and Engineering, Southeast

University, Nanjing 210096, Jiangsu, P. R. China, and aslo with Jiangsu

Jinheng Information Technology Co., Ltd, Nanjing 210035, Jiangsu, P. R.

China. (Email:wangsy@njsteel.com.cn).

Manuscript received xx Xxx. 202x; revised xx Xxx. 202x; accepted xx Xxx.

202x. Date of publication xx Xxx. 202x; date of current version xx Xxx. 202x.

(Corresponding authors: Feng Shan and Fang Dong.)

Digital Object Identifier no. 10.xxxx/TMC.202x.xxxxxxx

 !

 "

General Model

Application Scenarios of UAV

Data collection

Edge computing

Edge cloud

transimission/collection visiting rangewaypoint

Surveillance & Monitor

point of interest

turning angle

Fig. 1. A general PoI-visiting problem is formulated from various applica-
tion scenarios of UAV, such as data collection, surveillance and monitor,
UAV-aided edge computing.

UAV-aided edge computing, we formulate a general waypoint-

based Points of Interests (PoIs) visiting application scenario that a

UAV is planned to fly a waypoint-based flight route and visit a set

of PoIs. In our general scenario, a UAV visits a PoI by visiting any

point within its range, and even the ranges of PoIs may overlap, so

it is possible to visit more than one PoIs from the same waypoint,

with additional switching energy cost introduced later.

As shown in Fig. 1, such a generalized application scenario

matches various applications. (1) In the data collection application,

a UAV traverses all deployed ground sensors to collect data and

each ground sensor has a transmission range, within which the

UAV can receive the sensed data. The transmission ranges may

2

overlap with each other, while in the common range area, the

UAV has to switch from receiving one sensor to receiving another.

(2) In the surveillance and monitor application, a UAV patrols a

set of key facilities with an optical equipment and each facility has

a visibility range, only within which the onboard optical camera

can sense useful data. The visibility ranges may overlap when

two facilities are close, but the UAV must switch by rotating

the camera from one facility to another. (3) In the UAV-aided

edge computing application, a UAV equipped with a powerful

computation unit is dispatched to aid ground device computation

and each ground device has a computation offloading range, within

which the UAV can receive the offloaded computation tasks. Such

offloading ranges may overlap with each other, while the UAV has

to receive offloading tasks sequentially.

Although many work [1], [9], [22], [23] have studied some

of these popular UAV applications, most of them investigate the

UAV flight planning for special application scenarios only, e.g.,

the algorithm proposed in [1] is for collecting data, the method

designed in [9] is for monitoring in severe environment, and

the solution provided in [22] is intended for automating CSI

map construction, which is difficult to extend these algorithms to

other application scenarios. Moreover, some existing researches

view the ground PoI as a single “point” rather than a range,

failing to model general problems in real-world scenarios. We

thus formulate a UAV flight planning that generalizes a number

of UAV applications.

Besides, energy is an important consideration for UAV flight

planning. Due to limitation of the storage capacity onboard, the

UAV energy consumption directly affects its flight endurance.

Previous work has concluded [24] that, for a typical commercial

UAV, the flight energy consumption accounts for the most pro-

portion than any other operations, such as wireless transmission.

However, the previous studies on UAV flight energy models [1],

[7], [25], [26] simplify UAV flight operations and do not reflect

energy consumption accurately in models, which motivates us to

propose an improved and practical flight energy model.

To reveal a more practical and refined energy consumption

model for waypoint-based UAV flight planning, we conduct a set

of real-world experiments than the previous researches [27]–[29].

By our experiment results, we disclosed that, in addition to the

distance covered, making turns and switching PoIs-visiting also

affect energy consumption. More specifically, the larger turn a

UAV makes at a waypoint, the more flight energy consumed; the

more times it switches at a waypoint (to visit more PoIs), the more

energy consumption. Details will be introduced in Section 3. Our

energy model considering the energy consumption for turning and

switching is hence distinct from the most existing researches.

The problem to find an energy-efficient flight path planning

that considers the additional turning and switch energy is called

the general waypoint-based PoI-visiting problem. This problem is

quite challenging. The readers can sense the challenges from two

example paths illustrated in Fig. 1. We can see that both Path 1 and

Path 2 are composed of a serial of waypoints and straight line path

segments. A UAV stops and makes a turn at a waypoint, so during

the straight line path flight, a UAV accelerates, maintains the cruise

speed, and decelerates. As a result, Path 2 consumes more energy

on acceleration and deceleration, because it has more waypoints

than Path 1. However, a UAV following Path 1 makes larger angle

turns and has to switch more between PoIs at a waypoint, hence,

it spends more energy on turning and switching. Moreover, Path

1 is longer, so energy consumption in covering distance is more

than that of Path 2.

In summary, for any UAV flight planning algorithm to solve

our problem, a two-fold challenging tradeoff is unignorable. On

the one hand, there is a challenging tradeoff among the number of

waypoints, the size of turning angle, and the times of switching.

Fewer waypoints usually means that most waypoints of the route

are in overlapping range which leads to more switching between

PoIs and more winding flight path with larger angle of turns. On

the other hand, there is a challenging tradeoff among the number

of waypoints, the acceleration/deceleration, and the flight distance.

Fewer waypoints usually cause fewer straight line path segment

in the route, and thus fewer acceleration and deceleration; while

fewer waypoints also mean more overlapping-waypoints, and the

UAV usually has to detour to visit these waypoints with longer

flight distance due to the small overlapping-range.

As the challenges stated above, it is hard to find a straightfor-

ward solution to the general waypoint-based PoI-visiting problem.

Although much research effect has already been put to solve

similar UAV path planning problems, none of these existing

methods can be applied directly. First, theoretical methods based

on conventional mathematical programming can not be applied,

because our restrictions on turning angle and switching times are

non-traditional, so a solution, if exists, may have scalability issues.

Second, machine learning techniques do not work either, because

the solution efficiency relies on empirical and training models

which is dedicated to a specific problem, while our problem are

intended to be general. As a result, we tackle this problem from

a direct angle. Since, the partial goal of the general waypoint-

based PoI-visiting problem is to minimize the covered distance

of a tour, which can be naturally associated with the classic

traveling salesman problem (TSP) and its variants that aim to find

a minimum-cost cycle on a graph, so this motivates us to propose

a graph based solution to this problem. The straight flight cost can

be easily reflected in a graph, where the turning cost (proportional

to the turn angle) and the switching cost (proportional to the times

of switching) can not be embedded, which is the main gap we

need to bridge in our proposed graph based solution.

Therefore, the contributions of this paper are summarized as

follows.

• We generalize a number of popular UAV applications to

formulate a general UAV flight planning problem, named

the general waypoint-based PoI-visiting problem, aiming

at minimizing the UAV flight energy consumption.

• We devise a set of real-world experiments, and our new

findings include that turning at a waypoint and switching

between PoIs also cost energy, based on which, we develop

a more practical and refined flight energy model for rotor-

wing UAVs.

• We propose a novel graph based approach that the turning

and switching cost are respectively modelled by tactful

regular polygons and virtual splitting, to convert the orig-

inal problem into a classic graph problem which can

be solved efficiently. Theoretical analysis shows that the

graph redefinition approximation ratio is max{Θ/δ, 2},

where Θ is related to the designed graph parts and δ is a

constant.

• We conduct simulations to evaluate the performance of

the proposed algorithm. The results show it performs near

the optimal solution, within 107% of the minimum energy

consumption for small scale problems, and costs only 50%

3

the energy by a naive algorithm for large scale problems.

The rest of the paper is organized as follows. Section 2

surveys related work. Our motivation is presented in Section 3.

Section 4 shows the system model and problem formulation. And

a novel approach is proposed in Section 5. Then the theoretical

analysis and solution to the problem are given in Section 6.

The elaborate simulations are introduced in Section 7. Finally,

Section 8 concludes the paper.

2 RELATED WORK

2.1 Theoretical methods for UAV flight path planning

The theoretical methods for UAV flight path planning are the basis

of applications to guarantee the efficiency and safety for practice.

There are extensive researches that provide valuable ideas in solv-

ing path planning problems. (a) Much work utilizes conventional

mathematical programming to solve path planning problems [30]–

[33]. Zeng et al. [30], [31] and Zhan et al. [32] use successive

convex optimization to optimize the UAV flight path. To solve a

nonlinear optimization UAV path planning problem, Shi et al. [34]

transform this problem into an efficiently solvable integer linear

programming subproblem by relaxing some constraints. Based on

gradient-based trajectory optimization, Zhou et al. [33] devise a

path-guided optimization to tackle infeasible local minima, which

improves the path replanning success rate significantly. Iteration

based numerical solvers for such mathematical programming is

time consuming if the desired accuracy is high; while other

heuristic solvers for programming that involves mutual restrictions

or non-convex cases may have scalability issues. (b) The learning-

based algorithms are recently popular in UAV flight path planning

optimization [35]–[38]. For instance, in [35], [36], the authors

leverage deep learning approach to design the UAV flight path

in data collection. The authors in [37] propose an effective

UAV path planning approach based on reinforcement learning

for satisfaction-aware data offloading in surveillance systems.

Then [38] also refers to reinforcement learning technique to de-

termine the optimal UAV trajectories. However, machine-learning

based solutions’ efficiency relies on empirical and training models

which are dedicated to a specific problem, while our problem are

intended to be general. (c) Therefore, the graph-based method

attracts our attention. Like in [22], [39], the authors transform the

original path planning problems into traveling salesman problem

by constructing a graph to obtain the well-performing flight

path planning. Nevertheless, these existing algorithms are only

applicable to specific scenarios, we thus propose a graph-based

method to the general flight path planning in this work.

2.2 Energy-efficient UAV-aided applications

In this subsection, we give a brief introduction of energy-efficient

UAV-aided application researches, e.g., (a) UAV-aided ubiquitous

coverage to provide seamless wireless coverage service [40], [41],

(b) UAV-aided information/data collection to make up for the

shortcomings of the traditional network [5], [42], [43] and (c)

UAV-aided edge computing or relaying to improve the stability

and connectivity of the system [15], [44], [45]. (a) When UAVs

are exploited to enhance communication coverage, Liu et al. [40]

and Zhang et al. [41] emerge the deep reinforcement learning to

devise an energy-efficient UAV trajectory. (b) For data collection,

Ghorbel et al. [42] use classic linear programming and heuristic

algorithm to design efficient-energy path planning of data col-

lection. To maximize the accumulative volume of collected data,

Chen et al. [5] design a (1−1/e)-approximation algorithm for the

energy-constrained UAV. Focused on the security and efficiency

of data collection, Xu et al. [43] integrate an adaptive linear

prediction algorithm into blockchain-enabled system for data

collection scenario. (c) Other applications are in edge computing

scenario, where the time constraints are much stringent. Tun

et al. [15] and Li et al. [44] propose energy-efficient methods

based on mathematical optimization e.g., block successive upper-

bound minimization and successive convex optimization, to plan

UAV path of edge computing with computation latency, transmit

power and communication requirements. And the popular deep

reinforcement learning also used in a considerable number of

applications. For instance, Wei et al. [45] propose a distributed

deep reinforcement learning based method with the cooperative

exploring and prioritized experience replay to solve the practical

UAV-assisted computation offloading problem under changing

environment. As many UAV-aided applications are emerging, a

more general problem that fits multiple application scenarios is

desired.

2.3 UAV flight energy model

In this subsection, we focus on the UAV flight energy model,

which is the basis for the design of energy-efficient flight path

planning. In fact, UAV flight energy models can be loosely

classified into three categories: (a) the distance-related model [24],

[25], [40], [46], (b) the duration-related model [1], [4], and (c) the

speed-related model [15], [47]–[49]. (a) Some researchers prefer

the distance-related model. Ahmed et al. [24] obtain the distance-

related model for a fleet of UAVs. Subsequently, Liu et al. [40]

and Xiong et al. [46] in UAV energy consumption optimization

problems use the distance-related model. And for the control and

monitoring platform of heterogeneous UAVs, Huang et al. [25]

still adopt the distance-related flight energy model. (b) Consid-

ering that the effect of distance on energy consumption is not

well measured due to the variability of UAV, hence there are also

extensive efforts that adopt the duration-related model, but only

focus on the duration of UAV. For example, Mozaffari et al. [4] and

Gong et al. [1] choose the UAV duration-related energy model in

data collection scenario. In fact, although duration-related energy

model has its justification in the energy optimization problem, it

is still too simple to present the complex mobility of UAVs. (c)

Some researches indicate that the speed-related model is more

practical. For example, Morbidi et al. [47] obtain a speed-related

model and determine the minimum-energy paths for UAV. More

recently, Tun et al. [15] utilize speed-related model to solve UAV

path planning problem. However, these speed-related models only

partly characterize the UAV flight energy, and lack practicality.

This motivates us to remodel UAV energy model through real-

world experiments extended from our previous work [50]. Our

resulting energy model follows a theoretical speed-related energy

model developed by Zeng et al. [48], [49]. We will describe in

detail the experiments on the flight energy model in the next

section.

3 MOTIVATION

To obtain a more practical and accurate UAV energy consumption

model for waypoint-based flight planning, we conduct a series

of real-world experiments. In this section, we report the detailed

4

0

100

200

300

400

500

600

 0 3 6 9 12 15 18

P
o

w
e
r
(W

)

Time(s)

power of acceleration

power of deceleration

𝒗𝒗𝒂𝒂𝒂𝒂𝒂𝒂 = 𝟎𝟎𝟎𝟎/𝒔𝒔𝒗𝒗𝒅𝒅𝒅𝒅𝒂𝒂 = 𝟏𝟏𝟏𝟏𝟎𝟎/𝒔𝒔
𝒗𝒗𝒂𝒂𝒂𝒂𝒂𝒂 = 𝟏𝟏𝟏𝟏𝟎𝟎/𝒔𝒔
𝒗𝒗𝒅𝒅𝒅𝒅𝒂𝒂 = 𝟎𝟎𝟎𝟎/𝒔𝒔

(a) Time and power.

0

2

4

6

8

10

12

0 4 12 16 20

E
n

e
r
g

y
 c

o
n

su
m

p
ti

o
n

(J
)

8
peed(m/s)

10m 50m 100m

× !
"

(b) Flight speed and energy consumption.

0

1

2

3

4

5

0 20 40 60 80 100 120

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

(J
)

Flight distance(m)

6m/s 12m/s 18m/s

× 𝟏𝟎𝟑

(c) Flight distance and energy consumption.

0

0.2

0.4

0.6

0.8

1

1.2

0 25 50 150 175 200

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

(J
)

75 100 125

()

45° 90°

135° 180°

× !
"

(d) Turning angle and energy consumption.

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

(J
)

Hover time(s)

× 𝟏𝟎𝟑

(e) Hover time and energy consumption.

Raspberry Pi 3b

Current sensor ACS712

Pixhawk 3.6.5

(f) Our UAV during a flight test.

Fig. 2. A practical energy consumption model based on our real-world flight tests. (a) presents the trends of power in different times during
acceleration/deceleration. In (b), there is an optimal speed to minimize the energy consumption for a fixed distance. In (c), it is apparent that the
longer distance, the more energy consumed. (d) illustrates that energy consumption is a linear function about the turning angle. (e) shows that the
longer time UAV hovers, the more energy consumed. (f) is a photo of our UAV during a field flight test.

experiment settings and results. The experiment results show that

varying flight speed and making turns also affect energy cost,

which motivates the study of this paper.

In the field flight tests, we use a hexacopter rotor-wing UAV,

Model X4108 with 3.8 kg and a 1000mAh-capacity battery. This

UAV is equipped with autopilot Pixhawk 3.6.5 flight controller,

and a companion computing device, Raspberry Pi 3b single-

board computer (RPi). The real-time voltage value is read by

the RPi through USB from the flight controller via the MAVLink

communication protocol. A current module ACS712 is installed

onboard to detect the real-time battery current, which can be

read by the RPi via the I2C communication protocol. Given the

real-time current and voltage, it is easy to calculate the real-

time power consumption. Furthermore, the companion RPi sends

control commands by MAVLink protocol to UAV flight controller

automatically via the USB link.

In our field flight tests, we focus on the energy consumption

1) between two waypoints and 2) at a single waypoint. More

specifically, for the straight line flight path between two waypoints,

we test energy consumption for 1.1) acceleration/deceleration, 1.2)

distance and 1.3) cruise speed flight; for the operation at a single

waypoint, we test energy consumption for 2.1) making turns and

2.2) hovering to switch PoI-visiting. Field test results are given in

Fig. 2(a)-(e), and Fig. 2(f) shows our UAV during a flight test.

Field test 1.1: the relationship between time and flight

energy power during acceleration/deceleration. In this test,

we let the UAV accelerate (decelerate) at 1m/s2 for 16 seconds,

from 0 m/s (16 m/s) at the 0th second to 16 m/s (0 m/s) at

the 16th second. The time-power curves are shown in Fig. 2(a).

Based on the analysis of the result data, we obtain the function

of the motor power P in acceleration is related to flight time t
through P = 1.3876t2 − 10.591t+381.79. Similarly, we obtain

the relation between P and t in deceleration as a function P =
0.0114t4−0.7279t3+12.845t2−69.958t+389.74. Apparently,

the acceleration/deceleration consumes energy, so more waypoints

in UAV flight planning path means more acceleration/deceleration,

which results to inevitable energy consumption.

Field test 1.2: the relationship between flight speed and

flight energy power. In this test, we let the UAV fly straight

at various cruise speeds for a distance of 10, 50 and 100 meters

respectively. We test 6 cruise speeds for each kind of distance, and

the relationship between UAV energy consumption E and flight

speed v is shown in Fig. 2(b). We learn that given a fixed distance

there exists an optimal speed (not necessarily the maximum speed)

for the minimum energy consumption, and this finding indeed

satisfies a recent theoretical study [49].

Field test 1.3: the relationship between flight distance and

flight energy consumption. In this test, we control the UAV

to fly a fixed distance of 100 meters, at cruise speed v of 6

m/s, 12 m/s and 18 m/s respectively, and measure the real-time

energy consumption E. From the results in Fig. 2(c), we have

E = 47.249d when v = 6 m/s, E = 27.836d when v = 18
m/s, and E = 24.456d when v = 12 m/s. There is an optimal

speed, 12 m/s, which verifies the conclusion in Field test 1.2.

And the total energy cost to fly 100m at 12 m/s is 2445J , so

the distance-covering flight energy cost is an important part of the

flight energy consumption.

Field test 2.1: the relationship between turning angles and

flight energy consumption. In this test, we command the UAV to

make a turn at an angle of 45°, 90°, 135°, and 180° respectively.

The energy consumption is illustrated in Fig. 2(d). It is easy to see

that the angle θ and the UAV energy consumption E are related

nearly through function E = 5.3316θ + 104.65 in our settings.

When the UAV makes a 45° turn, its energy cost reaches close to

300J ; when the UAV makes a 180° turn, its energy cost reaches

close to 1100J , as a conclusion, the turning cost is non-negligible,

and related to the turning angle rather than replaced by a fixed cost

as [22].

5

Field test 2.2: the relationship between hover time and

flight energy consumption. In this test, we vary the hovering

time and obtain the UAV energy consumption. The results are

shown in Fig. 2(e). The UAV energy consumption E is linear with

the hovering time t. In our settings, we have E = 389.15t. So, as

the hovering time increases to 5s, the UAV has to consume almost

2000J energy. Therefore, in our general energy model, if the UAV

hovers for a while to adjust itself for better visiting, this energy

cost can not be ignored.

These findings from the field test results motivate us to

redefine UAV flight energy consumption composition, which will

be described in detail in the next section. Although our energy

model is motivated from the field tests of a specific UAV, the

flight energy model we are about to build is general, because our

model is designed for waypoint based rotor-wing UAVs.

4 SYSTEM MODEL AND PROBLEM FORMULATION

This section formulates the general waypoint-based PoI-visiting

problem, which generalizes some popular UAV application sce-

narios, such as data collection, monitoring and surveillance, and

UAV-aided edge computing. We highlight our field-test-originated,

more practical and more accurate UAV flight energy consumption

model for waypoint-based flight planning.

4.1 System model

Assume there are n PoIs, denoted as PoI i, i = 1, 2, · · · , n, where

a PoI can be a wireless sensor, a facility, or a mobile device. These

PoIs are randomly located within a rectangle region, and each PoI

has a range, e.g., the transmission range of a wireless sensor, the

visibility range of a key facility, the computation offloading range

of a mobile device. The area covered by the range of PoI i is

denoted as Ri, which is usually a circle. Note that the radius of

Ri is allowed to vary for different PoIs, and Ri may overlap with

another range area Rj .

There is a base station within the region, and a UAV is

dispatched from this station, flying along a planned tour to visit

all PoIs, and returns to the original station eventually. Without

loss of generality, we denote the base station as PoI 0. Note that

PoI i is visited by the UAV if any point within area Ri is visited

as a waypoint. In each tour, the UAV flies at a fixed altitude, and

follows a waypoint-based route. Assume there are m waypoints on

the route, denoted as Waypoint j, j = 1, 2, · · · ,m. Obviously, at

Waypoint x, the UAV can visit PoI i only if Ri contains Waypoint

x. Let Dx represent the set of PoIs that the UAV visits at Waypoint

x. If |Dx| > 1, it means the UAV visits (motionlessly) more than

one PoI at Waypoint x. Each PoI must be visited, so we have all

PoIs visiting constraint,

|
⋃

x

Dx| = n+ 1. (1)

Since visiting a certain PoI can be equivalent to visiting any

waypoint inside its range, we divide the region by small grid to

reduce the searching space of the planning algorithm as shown in

Fig. 3. Assume an N ×M size region is discretized into multiple

g × g size grids and a grid is represented by its grid center, called

a waypoint candidate. Area Ri thus may cover a set of waypoint

candidates, and let the set be denoted as Si, which is called the

waypoint candidate set for PoI i. Meanwhile, let S represents the

collection of all waypoint candidate subsets, i.e., S = {S1 ∪S2 ∪
· · · ∪ Sn}. Only at a Waypoint x ∈ Si, a UAV can visit PoI i, in

Region

Fig. 3. The relationship among ranges, grids and waypoint candidates
within the region. A set of square grids is used to discretize the region.
PoIs are marked by blue stars, whose ranges are colored in black
dashed circles, and the waypoint candidates are marked by black dots.

other words, i ∈ Dx implies that x ∈ Si, so we have the range

visiting constraint,

∀i ∈ Dx ⇒ x ∈ Si ∀x. (2)

A waypoint candidate x ∈ Si can be also covered by other PoIs

x ∈ Sj due to the overlapping, so we denote all these PoIs as set

Px,

Px = {i|x ∈ Si}. (3)

An illustration of the relationship of ranges, grids, and waypoints

is in Fig. 3. We want to plan a route that consists of a serial

of waypoints to ensure all PoIs are visited, so planning a route

is reduced to choosing waypoints from all waypoint candidates.

Assume x and y are two arbitrary waypoint candidates of the

region. Let wxy indicts whether straight directed path exy , from x
to y, is included in the route,

wxy =

{
1, exy is in the route,

0, otherwise.
(4)

Then, when |Dx| > 0, there must be a path to and from x; when

|Dx| = 0, certainly there is no such path. We have the following

route connecting constraint,

{ ∑
∀y wyx =

∑
∀y wxy ≥ 1, |Dx| > 0,∑

∀y wyx =
∑

∀y wxy = 0, |Dx| = 0.
(5)

Our goal is to plan a route such that the UAV energy consump-

tion is minimized. We list the key notations in Table 1.

TABLE 1
Definition of notation

Notation Definition

Ri The area covered by the range of PoI i
Si Waypoint candidate set of PoI i
Dx Set of PoIs that the UAV visits at Waypoint x
Px Set of PoIs that covers waypoint candidate x
exy Direct path from Waypoint x to Waypoint y
wxy If exy in the route then wxy = 1, otherwise wxy = 0
qxyz Angle between exy and eyz
dxy Index of the flight direction from x to y, dxy = 1, 2, · · · , 8
E(·) Energy consumption

EC Overall energy consumption for straight flight

ET Overall energy consumption for making turns

ES Overall energy consumption for switching PoI-visiting

EM Overall energy consumption for service provisioning

6

4.2 Energy consumption model

We now model the energy consumption according to our real-

world experiments in the previous section. Although our field

tests are based on a specific UAV, the flight energy consumption

model in this subsection is designed for waypoint based rotor-wing

UAVs, which is general.

Let x and y be two arbitrary waypoint candidates. Flying

straight from x to y, the UAV first accelerates to the cruise speed

and then flies at this speed until it decelerates to 0 to visit Waypoint

y.

Definition 1 (Straight flight energy consumption). The energy

consumption for a straight flight on path exy , from waypoint

candidate x to y, is defined as E(exy), which is related to

acceleration/deceleration and cruise speed.

Our proposed method can handle arbitrary energy function

E(exy). In our simulations, we set E(exy) = c1|exy|+C1, where

c1 is the energy consumption ratio proportional to the distance,

and C1 is the energy consumption related to acceleration/deceler-

ation. We define the total energy consumption related to straight

flight by EC ,

EC =
∑

∀x,∀y

E(exy)wxy. (6)

Let x, y and z be three arbitrary waypoint candidates that are

not on a straight line. Between the two adjacent straight paths, exy
and eyz , the UAV has to make a turn at y. Denote the angle of

turn as qxyz , which is determined by the locations of x, y and z.

Definition 2 (Turning energy consumption). The energy consump-

tion for a UAV to make a turn at waypoint candidate y, from x
to z, is defined to be E(qxyz), where qxyz is the heading angle

changed from path exy to eyz .

Energy function E(qxyz) is the energy consumption related

to the turning angle qxyz . In our simulations, we set E(qxyz) =
c2qxyz + C2, where c2 and C2 are constant factors related to a

special UAV. The total energy consumption for all turns is denoted

as ET , which can be calculated as

ET =
∑

∀x,∀y,∀z

E(qxyz)wxywyz. (7)

If the UAV switches PoI-visiting at Waypoint x, i.e., Dx

contains more than one PoI, additional energy consumption occurs

because the UAV is required to hover to set out the switching, e.g.,

establishing connection to a mobile device or sensor, rotating the

optical camera from one direction to another, and the cost is called

switching energy consumption.

Definition 3 (Switching energy consumption). The energy con-

sumption for a UAV to switch between PoIs at waypoint candidate

x is defined to be E(Dx), related to the number of PoIs in Dx.

If |Dx| = 1, there is no switch needed, we set the switching

energy to be proportional to |Dx|−1, i.e., E(Dx) = c3(|Dx|−1),
where c3 is the constant factor that related to a special UAV. So the

total energy consumption of switching between PoIs is aggregated

by all waypoints, denoted as ES , which can be calculated as

ES =
∑

∀x

E(Dx). (8)

Moreover, the UAV generally needs additional energy con-

sumption to provide service for PoIs, i.e., data collection, record-

ing video in monitoring and computation in edge computing, and

this cost is called service energy consumption.

Definition 4 (Service energy consumption). The energy consump-

tion for a UAV to provide service for a PoI i is denoted as E(i),
related to the service requirement PoI i.

Note that the UAV has to visit and provide service for all PoIs,

so the total service energy consumption is written as:

EM =
∑

∀i

E(i) (9)

After explicitly decomposing the total energy consumption, we

now recompose it by summing the costs of these parts discussed

above, simply marked as E+
ALL.

E+
ALL = EC + ET + ES + EM . (10)

Because the service requirements of PoIs are generally known

before scheduling, the service energy consumption EM is a

known constant. We hence define the following partial energy

consumption without the constant EM .

EALL = EC + ET + ES . (11)

To minimize the total energy consumption E+
ALL is equivalent

to minimizing the partial energy consumption EALL = E+
ALL −

EM , where EM is a constant.

4.3 Problem formulation

Given the model described above, we are ready to define this

problem as P1.

Definition 5 (P1). Given a set of PoIs and models mentioned

above, the general waypoint-based PoI-visiting problem is to find

a route for UAV to minimize the total energy consumption in

Eq. (11), while the all PoIs visiting constraint Eq. (1), the range

visiting constraint Eq. (2), the route connecting constraint Eq. (4)

and Eq. (5) are satisfied.

Formally, we give the following problem formulation:

(P1) min Eq. (11)

s.t. Eq. (1), (2), (4), (5),

Eq. (6), (7), (8).

5 GRAPH REPRESENTATION OF TURNING AND

SWITCHING

Problem P1 seeks a flight route, starting from PoI 0 and ending

at PoI 0, selecting a series of waypoints to visit each PoI with

the minimum total energy consumption in Eq. (11). This problem

seems to have deep roots in classic graph problems, such as the

generalized traveling salesman problem (GTSP). In GTSP, there is

a set of cities and some subsets of these cities, where a salesman

must visit every subset by one of its city with the shortest tour and

ultimately return to the starting city. We can connect problem P1

to GTSP by mapping each PoI to one city subset, each waypoint

candidate of any PoI to one city of a city subset, energy cost

between waypoints to distance between cities. In this way, we

map the major parts of P1 to the graph based GTSP.

However, one important gap is how to embed the turning

cost and the switching cost into a graph, which are proportional

7

𝒙 𝒚 𝒛𝒑
(a)

𝒙𝟏
𝒚𝟏

PoI 1

PoI 2

(b)

Fig. 4. The energy cost of making turns and switching PoI-visiting in
original problem. In (a), according to our real-world experiments, making
turns also costs UAV energy, which is proportional to turning angles. In
(b), switching visiting between PoIs also costs energy, which is propor-
tional to the times of switching. These two part of energy consumption
are both hard to be represented in a graph.

to the turning angle and the times of switching respectively.

More specially, there are two difficulties with this problem: 1)

the turning energy consumption in Definition 2 is unable to

be intuitively reflected by any graph element such as the edge

weight. For example in Fig. 4(a), at Waypoint y, its turning

energy consumption is related to the turning angle, so its previous

waypoint, x, and its next waypoint, z, directly affect the turning

cost on the route. Both two waypoints can not be determined when

the graph is constructed, so it is arduous to represent the turning

cost at Waypoint y on the graph by edge weight. And 2) the

switching energy consumption in Definition 3 can not be easily

represented in the graph model either. For example in Fig. 4(b),

Waypoint x1 is in the overlap of PoI 1 and PoI 2, so the UAV

can either visit (motionlessly) the two PoIs sequentially with

switching cost at x1, or only visits one PoI without switching cost.

However, when the graph is constructed, the two possibilities are

both open, so it is hard to be modeled by edge weight. Therefore,

how to convert a) the energy consumption of straight flight, b) the

energy consumption of turning, and c) the energy consumption of

switching PoI-visiting, into a unified form (edge weight) on the

graph model is our main task. In the following subsections, we

propose a novel approach to solve this problem ingeniously.

We start with a simple case, i.e., modeling energy cost of

straight flight by graph G1(S1,E1,W1). The vertex set S1 is

defined to encompass all waypoint candidates, S1 = S1 ∪ S2 ∪
· · · ∪ Sn. The edge set E1 includes directed edge exy if waypoint

candidate x and y belong to different PoIs. In order to model the

energy cost of straight flight from x to y on exy , we directly set

the edge weight W (exy) = E(exy). And W1 includes all weights

of edges. Hence, graph G1(S1,E1,W1) is generated.

5.1 Modeling energy cost of making turns

This subsection improves graph G1 to include the energy cost

of making turns, and generates graph G2. According to our

practical energy consumption model, we have the turning energy

consumption E(θ) = c2θ + C2, where θ is the heading angle

changed, and c2 and C2 are factors related to a special UAV. Since

energy C2 is constant for any turn, it can be added to the weight

of edges directly, W (exy) = E(exy) +C2, ∀x, y. Now we focus

on modeling the proportional energy to angles c2θ.

The core idea is that we approximate the infinitely precise

turning angle into a set of finite options, and use edge weight

to represent the energy cost of making turns. To simplify the

illustration and make it easier to calculate, we utilize regular

octagons as drawn in Fig. 5(a) to replace original waypoints in

Fig. 4(a). It is also feasible to choose other regular polygons,

𝒑𝟖𝒑𝟕𝒑𝟔𝒑𝟓𝒑𝟒𝒑𝟑 𝒑𝟐𝒑𝟏
𝒚𝟖𝒚𝟕𝒚𝟔𝒚𝟒𝒚𝟓 𝒚𝟑 𝒚𝟐𝒚𝟏 𝒛𝟖𝒛𝟕𝒛𝟔𝒛𝟒 𝒛𝟑 𝒛𝟐 𝒛𝟏

𝒛𝟓
𝒙𝟖𝒙𝟕𝒙𝟔𝒙𝟓𝒙𝟒 𝒙𝟑 𝒙𝟐 𝒙𝟏𝑶𝒙 𝑶𝒚 𝑶𝒛𝑶𝒑

(a)

𝒙𝟏𝟏
𝒙𝟏𝟐

𝒚𝟏
PoI 1

PoI 2

(b)

Fig. 5. Modeling the energy cost of making turns and switching PoI-
visiting in a graph. In (a), we utilize regular octagons to replace original
waypoints, evenly dividing the infinite 360°turning angles into 8 ranges
to present 8 heading directions of a UAV, where each corner of octagon
corresponds to 45°direction range. The choice of other regular polygons
is discussed in subsection 6.1. In (b), we separate the overlapping
ranges by splitting waypoints into virtual copies, and assign the switching
energy consumption of one switch to the weight of a connecting edge
between two virtual copies of octagon vertices.

like hexagon, decagon and so on. We present detailed theoretical

analysis on the choice of different regular polygons in the next

section. For the choice of regular octagons, we evenly divide the

infinite 360° turning angles into 8 ranges to present 8 heading

directions of a UAV, where each corner corresponds to one

direction range of 45°. Hence, when a UAV makes a turn, the

change of its heading direction is demonstrated by two corners on

the octagon, i.e., the arrival corner and departure corner. In this

way, the turning is proportional to the path weight sum between

the two corners, as shown in Fig. 5(a). Furthermore, during a

straight flight path, a UAV does not change its heading direction,

so the departure corner of the starting octagon must match the

arrival corner of the ending octagon. For this reason, the departure

corner determines not only a direction range but also the reachable

octagons in this direction. For example, waypoint candidate y in

Fig. 4(a) can reach waypoint candidate z and p, while in Fig. 5(a),

the octagon of y reaches the octagon of z and the octagon of p
from different departure corners that represent different heading

direction ranges.

Formally, we convert graph G1 = (S1,E1,W1) into G2 =
(S2,E2,W2). Any vertex (waypoint) x ∈ S1, is expanded into

a regular octagon, denoted as Ox, with 8 vertices, indexed as

x1, x2, · · · , x8, and each range thus represents one 45° direction.

Here we let x9 = x1 for loop purpose. The set S2 includes the

vertices of all octagons. Between each two adjacent vertices on

Ox, such as xi and xj , |i − j| = 1, there is an edge, exixj
∈

E2, whose weight is set to W (exixj
) = 45°c2, representing the

cost of a 45° turn. For straight flight, such as from Ox to Oy ,

the UAV keeps its heading direction unchanged, which means the

direction index of departure corner xi on Ox must cover Oy ,

and the arrival corner on Oy has the same direction index as xi,

i.e., yi. We define the index of the flight direction from x to y
as dxy = 1, 2, · · · , 8. Therefore, for any edge exy ∈ E1, we

create an edge exiyi
∈ E2, where i = dxy . Note that Ox is an

infinitesimal regular octagon without physical significance, so the

weight of exiyi
is equal to the weight of original edge exy , i.e.,

W (exiyi
) = W (exy). Let W2 covers weights of all edges. The

pseudocode is in Algorithm ModelingTurns.

An example is given in Fig. 5(a) to help readers to get a better

sense on how our modeling works. There are four waypoints

x, y, z and p, thus we have four octagons Ox, Oy, Oz and Op.

First, we check the path x → y → z. Assume the UAV starts

at direction 1 of Ox, i.e., x1. Since Oy is within the direction

index of x1, there is an edge ex1y1
, according to Line 8 of

8

Algorithm 1: ModelingTurns(G1(S1,E1,W1))

1 S2 = ∅,E2 = ∅,W2 = ∅;
2 for each x ∈ S1 do
3 S2 = S2 ∪ {x1, x2, · · · , x8};
4 E2 = E2 ∪ {exiyj ||i− j| = 1, i, j = 1, 2, · · · , 9};

5 W2 = W2 ∪ {W (exixj) = 45°c2}, |i− j| = 1, i, j =
1, 2, · · · , 9;

6 end
7 for each exy ∈ E1 do
8 E2 = E2 ∪ exiyi , where i = dxy;
9 W2 = W2 ∪ {W (exiyj) = W (exy)};

10 end
11 return G2(S2,E2,W2)

Algorithm ModelingTurns. Then the UAV moves along ex1y1

to reach y1. Next the UAV continues at y1, and then goes through

edge ey1z1 to arrive at z1 by the same logic. Note that the energy

consumed on acceleration/deceleration has been modeled on the

weight of edge ex1y1
and ey1z1 already. Second, we check the path

x → y → p, where the UAV has to make a turn at y. Similarly,

assume the UAV starts at x1 and arrives at y1 through edge ex1y1
.

Subsequently, since Op is outside the direction range of vertex y1,

at first the UAV chooses the octagonal edges, i.e., ey1y2
, ey2y3

and ey3y4
, to make three 45° turns to arrive at y4 according to

the algorithm. Then it directly reaches the target p4 through edge

ey4p4
. In this case, the energy cost of making three 45° turns can

be calculated by the three-edges weight of octagon. In conclusion,

our modeling of turns works correctly, the larger the turning angle,

the more the sum of edge weight on the octagon.

5.2 Modeling energy cost of switching PoI-visiting

In this subsection, we pay special attention to the switching energy

cost of PoI-visiting and generate a new graph G3. By the definition

of the energy cost of switching PoI-visiting, E(Dx) = c3(|Dx|−
1), if |Dx| > 1, there is a switching cost at x, which must be

skillfully reflected by the edge of the graph.

Our core idea is that, for any waypoint candidate in the

common area of multiple PoIs, we split it into virtual waypoint

candidate copies, one for each PoI. There is an edge between any

two copied vertices, and we can assign the cost of one switching

to its weight. This idea is inspired by [51]. Then we convert graph

G2 = (S2,E2,W2) into G3 = (S3,E3,W3). Since Px is the set

of PoIs that covers waypoint candidate x, i.e., Px = {k|x ∈ Sk},

any vertex xi ∈ S2 is converted to |Px| copies. And if |Px| > 1,

we connect every two copies with an edge weighted c3, repre-

senting one switching cost between the involved PoIs. We present

these steps formally in Algorithm ModelingSwitch.

An example is given in Fig. 5(b) to clarify some key steps

in Algorithm ModelingSwitch. Assume Waypoint x1 locates

in the overlapping range of PoI 1 and PoI 2. Following Algo-

rithm ModelingSwitch, first separate the overlapping ranges

by making two copied of x1, i.e., x1
1 and x2

1, and then assign them

to PoI 1 and PoI 2 one for each, as displayed in Fig. 5(b). Then an

edge is added to connect the two copied vertex (the blue dashed

line in Fig. 5(b)), whose weight is equal to the energy cost of one

switching PoI-visiting. Moreover, every edge with an endpoint

inside the overlapping range, such as edge ey1x1
, is replaced by

two new edges (red dashed lines in Fig. 5(b)), ey1x1

1
and ey1x2

1
,

with the same weight as that of ey1x1
. Hereby, any switching cost

is now reflected on the graph, and the total switching cost can

Algorithm 2: ModelingSwitch(G2(S2,E2,W2))

1 S3 = ∅,E3 = ∅,W3 = ∅;
2 for each xi ∈ S2 and each p ∈ Px do
3 S3 = S3 ∪ {xp

i };
4 for each q ∈ Px and p 6= q do
5 E3 = E3 ∪ {exp

i
x
q
i
};

6 W3 = W3 ∪ {W (exp
i
x
q
i
) = c3};

7 end
8 end
9 for each exixj ∈ E2 and p ∈ Px do

10 E3 = E3 ∪ {exp
i
x
p
j
};

11 W3 = W3 ∪ {W (exp
i
x
p
j
) = W (exixj)};

12 end
13 for each exiyi ∈ E2 do
14 for each p ∈ Px and q ∈ Px do
15 E3 = E3 ∪ {exp

i
y
q
i
};

16 W3 = W3 ∪ {W (exp
i
y
q
i
) = W (exiyi)};

17 end
18 end
19 return G3(S3,E3,W3)

be easily represented by summing up the weights of all involved

edges.

5.3 Redefinition of the problem by a graph model

Since the turning cost and the switching cost are modeled by

Algorithm ModelingTurns and ModelingSwitch in the

previous subsections, we can redefine P1 by the generated graph

G3(S3,E3,W3). Here we define a new directed weighted graph

D(S,E,W, S′), where the vertex set S = S3, the edge set

E = E3, the weight set W = W3. Besides, the set S′ =
{S′

1, S
′
2, · · ·S

′
n}, where S′

p = {xp
i |x ∈ Sp, i = 1, 2, · · · , 8}

is vertex set for PoI p, p = 1, 2, · · ·n. Note that, we have

S′
p ∩ S′

q = ∅, ∀p 6= q by ModelingSwitch.

Definition 6 (P2). Given a directed weighted graph

D(S,E,W, S′), the graph-based general waypoint-based PoI-

visiting problem is to find a feasible tour in D to visit each subset

S′
p ∈ S′ once, while the sum of weights of all edges chosen is

minimum.

Since problem P1 can be converted into P2, step by step via

intermediate graph model G1, G2, G3, D for transformation, now

we are ready to explicate the direct correspondence between P1

and P2.

Each waypoint candidate x in P1, following the elaborate

transformation of the modeling making turns in Section 5.1 and

the modeling switching PoI-visiting in 5.2, has its corresponding

vertices of octagon in graph D of P2, hence the vertex set S can

be denoted as:

S = {xp
i |x ∈ S, i = 1, 2, · · · , 8, p ∈ Px}, (12)

where S covers all waypoint candidates in P1, and Px includes

the PoI that covers waypoint candidate x.

Since we have learned the correspondence between waypoint

candidates in P1 and vertices in the graph D of P2, the edges

in D are easy to be determined. The edge set E covers three

types of edges. a) The edge between adjacent vertices of an

octagon, representing a 45° turning1, exp
i x

p
j
, where |i − j| =

1. We set x9 = x1 for loop purpose.

9

1, i, j = 1, 2, · · · , 9. b) The edge between the same-index vertices

of different octagons, representing a straight flight between two

different waypoint candidates in P1, exp
i y

q
i
, where i = dxy is the

index of the flight direction from x to y. c) The edges between

two virtual copies of octagon vertices, representing a switching

PoI-visiting between their corresponding waypoint candidates in

P1, exp
i x

q
i
. So E can be denoted as:

E = {exp
i x

p
j
|x ∈ S, p ∈ Px, |i− j| = 1, i, j = 1, 2, · · · , 9}∪

{exp
i y

q
i
|x ∈ S, y ∈ S, p ∈ Px, q ∈ Py, i = dxy}∪

{exp
i x

q
i
|x ∈ S, p ∈ Px, q ∈ Px, i = 1, 2, · · · , 8, p 6= q}. (13)

By Definition 1, 2 and 3, we assign different weights to

the edges in E, corresponding to different types of UAV energy

consumption in P1: the weights of the edges between adjacent

vertices of octagon, set to the energy cost of making a 45° turn,

45c2; the weights of the edges between the same-index vertices of

octagons, set to the energy cost of a straight flight between their

corresponding waypoint candidates, E(exy) + C2; the weights

of the edges between two virtual copies of octagon vertices,

set to the energy cost of a switching PoI-visiting between their

corresponding waypoint candidates, C3. So we have

W = {W (exp
i y

q
i
) = E(exy) + C2}∪

{W (exp
i x

p
j
) = 45c2}∪

{W (exp
i x

q
i
) = C3}. (14)

To sum up, we have clarified the direct correspondence

between problem P1 and problem P2. But how the problem

redefinition affects the solution is still unanswered, we thus give

the theoretical analysis in the next section.

6 THEORETICAL ANALYSIS AND SOLUTION

In this section, we first provide theoretical analysis for the graph

redefinition, and then present the solution to the graph-based P2.

6.1 Theoretical analysis for the graph redefinition

The purpose of this subsection is to investigate how the graph

redefinition from problem P1 to problem P2 affects the solutions.

More specially, we provide theoretical analysis to see the differ-

ence between the value of any feasible solution of P1 and the value

of the corresponding solution of P2.

Lemma 1. Any feasible solution of problem P2 can be uniquely

mapped into a feasible solution of problem P1, and vice versa.

Proof. Since the transformation from a feasible solution of P1 to

that of P2 has been discussed in Section 5 in detail, here we only

show how to map a feasible solution of P2 to one of P1.

Following the definition of P2, a feasible tour in D must visit

each subset by at least one of its vertices. If there are two or more

vertices in one subset e.g., S′
p, edge type as exp

i x
p
j
∈ S, |i−j| = 1

must be included in the tour, because it is the only type of edges

that can connect two vertices within the same subset. Besides,

between any two subsets S′
p and S′

q , where p 6= q, there are only

two types of edges, e.g., exp
i y

q
i
∈ S or exp

i x
q
i
∈ S, so either of

which is possible to be included in this tour.

According to Eq. (12), (13), and (14), in a solution of P2, if an

edge exp
i y

q
i
∈ S is included in the tour, the UAV has to fly straight

from Waypoint x to y with an energy cost of E(exy) +C2 in P1;

if an edge exp
i x

p
j
∈ S, |i− j| = 1 is included in the tour, the UAV

has to make a 45° turn at Waypoint x with an energy cost of 45c2
in P1; if an edge exp

i x
q
i
∈ S is included in the tour, the UAV has

to switch visiting from PoI p to q with an energy cost of c3 in P1.

And we can conclude that the total weights of the tour in P2 is

equal to the total UAV energy consumption of the flight in P1.

Clearly, we give a comprehensible explanation about the

mapping relation between the solution of P1 and that of P2.

Let α and |α| represent a feasible flight planning tour of P1 and

its energy consumption, and let β and |β| represent a feasible so-

lution of P2 and its sum of weights. Define a function, p1to2(α),
to convert α to a corresponding solution of P2. Similarly, define

p2to1(β) to convert β to a corresponding solution of P1.

Based on the proof of Lemma 1, we have already learned

that |β| = |p2to1(β)|, while the relationship between |α| and

|p1to2(α)| has to be clarified. More specifically, we define
|p1to2(α)|

|α| as the graph redefinition approximation ratio and pro-

vide theoretical analysis on its upper bound.

Definition 7 (Graph Redefinition Approximation Ratio). Let αopt

be the optimal solution for an instance of P1, and then define

OPT=|αopt| and OPT*=|p1to2(αopt)|. Let β = p1to2(αopt)
and αalg = p2to1(β), and then define ALG=|αalg|. So we have

the Graph Redefinition Approximation Ratio Rred:

Rred =
OPT*

OPT
=

ALG

OPT
=

|αalg|

|αopt|
.

For the theoretical analysis on the upper bound of the graph

redefinition approximation ratio, we do not restrict on utilizing

regular octagons to approximate the choices of a turning angle,

but regular polygon with H edges and thus one direction range of

the polygon can be denoted as Θ = 360
H . In practical, a UAV does

not turn an arbitrary small angle, but a minimum real-world angle,

which is denoted as δ.

Theorem 1. The upper bound of the Graph Redefinition Approx-

imation Ratio is max{Θ/δ, 2}, i.e., Rred ≤ max{Θ/δ, 2}.

Proof. For an instance of P1, there is an optimal solution αopt,

and a converted corresponding solution of P2, β = p1to2(αopt).
And we have |β| = |p2to1(β)| by the proof of Lemma 1. Clearly,

to solve Rred = |p1to2(αopt)|
|αopt| is equivalent to solving the ratio

between ALG=|p2to1(β)| = |αalg| and OPT=|αopt|.
Formally, let |αopt| = Eopt

ALL and |αalg| = Ealg
ALL, so Rred =

Ealg
ALL/E

opt
ALL. According to Eq. (11), we have

Eopt
ALL = Eopt

C + Eopt
T + Eopt

S ,

Ealg
ALL = Ealg

C + Ealg
T + Ealg

S .

Following the graph-based transformation from P1 to P2, for

the energy consumption of both straight flight EC and switching

ES , there is no difference between αalg and αopt. So we have

Ealg
C = Eopt

C , Ealg
S = Eopt

S .

As a result we focus on the comparison of turning energy con-

sumption, Eopt
T and Ealg

T . Combined with Definition 2, Eopt
T and

Ealg
T can be respectively defined as:

Eopt
T =

∑

j

(c2θ
opt
j + C2) =

∑

j

c2θ
opt
j +

∑

j

C2,

Ealg
T =

∑

j

(c2θ
alg
j + C2) =

∑

j

c2θ
alg
j +

∑

j

C2,

10

where θoptj and θalgj are the j-th turning angles for αopt and αalg

respectively.

Observe that θalgj and θoptj are determined by their incoming

and outgoing edges. For any incoming or outgoing angle θ, we

have the following equation by Algorithm ModelingTurns,

θ
′

= Θ(⌊
θ

Θ
⌋+

1

2
).

We hence can utilize the subtraction of incoming and outgoing

angles to represent an angle, i.e.,

θoptj = θ1 − θ2,

θalgj = θ
′

1 − θ
′

2 = Θ(⌊
θ1
Θ
⌋+

1

2
)−Θ(⌊

θ2
Θ
⌋+

1

2
).

Without loss of generality, we assume 180° ≥ θ1 > θ2 ≥ 0.

Clearly, we have

Rred =
Ealg

T

Eopt
T

=
Ealg

C + Ealg
S +

∑
j c2θ

alg
j +

∑
j C2

Eopt
C + Eopt

S +
∑

j c2θ
opt
j +

∑
j C2

<

∑
j c2θ

alg
j∑

j c2θ
opt
j

≤ max
∀j

{
θalgj

θoptj

}

= max
∀θ1,∀θ2

{
Θ(⌊ θ1

Θ ⌋+ 1
2)−Θ(⌊ θ2

Θ ⌋+ 1
2)

θ1 − θ2
}

= max
∀θ1,∀θ2

{
⌊ θ1
Θ ⌋ − ⌊ θ2

Θ ⌋
θ1
Θ − θ2

Θ

} = max
∀d1,∀d2

{
⌊d1⌋ − ⌊d2⌋

d1 − d2
},

where we set d = θ/Θ for the last equation.

Actually, Θ · (⌊d1⌋ − ⌊d2⌋) and Θ · (d1 − d2) are the turning

angles respectively derived from ALG and OPT. Now we analyze

Rred by classification.

(i) Θ · (⌊d1⌋ − ⌊d2⌋) = 0, which means there is no turning, so

Rred ≤ max
∀d1,∀d2

{
⌊d1⌋ − ⌊d2⌋

d1 − d2
} = 0

(ii) Θ · (⌊d1⌋− ⌊d2⌋) = Θ, implying that there is a turn with Θ
degrees. Moreover, Θ · (d1 − d2) = θ1 − θ2 ≥ δ, so

Rred ≤ max
∀d1,∀d2

{
⌊d1⌋ − ⌊d2⌋

d1 − d2
} ≤

Θ

δ

(iii) Θ · (⌊d1⌋ − ⌊d2⌋) = Θ · Q, where Q ≥ 2, Q ∈ R
+,

indicating there are Q Θ-degree turns. Then, we must have

Θ · (d1 − d2) ≥ Θ · (Q− 1), so

Rred ≤ max
∀d1,∀d2

{
⌊d1⌋ − ⌊d2⌋

d1 − d2
} ≤

Q

Q− 1
< 2

To sum up, we have proven Rred ≤ max{Θ/δ, 2}. In other

words, the upper bound of the Graph Redefinition Approximation

Ratio is max{Θ/δ, 2}.

A very large and loose upper bound does not have any

theoretical significance, although it is technically correct. So, it

is important to find a tight upper bound.

Theorem 2. max{Θ/δ, 2} is a tight upper bound of the Graph

Redefinition Approximation Ratio Rred.

Proof. We prove this theorem is correct by giving an exam-

ple whose graph redefinition approximation ratio Rred equals

max{Θ/δ, 2}.

We construct an optimal solution αopt of problem P1 with

the following properties: the whole cyclic tour is divided into

…
…

…

…

……

𝑚 octagonal edges

…

…

…

…

……

𝑚 -degree turn
𝛿 𝛿 𝛿𝛿 𝛿 𝛿 𝛿

𝑚 -degree turn

octagonal edges𝑚

Fig. 6. A feasible tour of problem P1 and its corresponding tour of
problem P2. The tour of P1 has of 8 segments, each of which consists of
m δ-degree turns. By our proposed algorithm, each of these segments
consists of m Θ-degree turns. If we let Θ = 45°, each segment thus
consists of m octagonal edges as shown.

H = 360°/Θ segments, and each segment consists of m δ-

degree turns and one Θ-degree turn in order. Let Θ = 45°, then

a more specific illustration of this example is demonstrated in

Fig. 6. We assume other energy consumption is ignorable com-

pared to the proportional part of the turning energy consumption.

Consequently, we calculate the energy consumption of OPT:

Eopt = Eopt
T = (H ·m · δ + 360°)c2.

By carefully design the incoming angle and outgoing angle

in the constructed example as in Fig. 6, each δ-degree turn is

approximately represented by an edge in β = p1to2(αopt), where

each edge is mapped into a Θ-degree turn in αalg = p2to1(β).
So, the sum of all these turning angles in ALG is H ·m·Θ+360°.

Therefore, we have

Ealg = Ealg
T = (H ·m ·Θ+ 360°)c2.

Since Rred = Ealg
T /Eopt

T , we have

lim
m→∞

Rred =
Θ

δ
.

In short, with the elaboration of this example, we can prove

the upper bound of the Graph Redefinition Approximation Ratio,

Rred = max{Θ/δ, 2}, is tight.

Lemma 2. The number of vertices and edges in the graph

D(S,E,W, S′) of problem P2 can be respectively denoted as

F |S|(Θ) and F |E|(Θ):

F |S|(Θ) =
360°

Θ
Ŝ,

F |E|(Θ) =
720°

Θ
(2Ŝ − S̃) + 2(Ŝ2 − 2Ŝ + S̃),

where

Ŝ =
∑

∀i

|Si|, S̃ = |
⋃

∀i

Si|,

Si covers all waypoint candidates in PoI i, and Ŝ and S̃ are both

constants for any given problem instance.

Proof. Based on the transformation in Section 5.1 and 5.2, each

waypoint candidate in P1 has H = 360°/Θ vertices in D, and

11

the number of polygons is the sum of waypoint candidates in each

PoI, so clearly the number of vertices in D satisfies F |S|(Θ).
While the edge set of D consists of three parts.

(i) Edges inside polygons. The number of such directed edges

is twice the number of all vertices in D, 2 · F |S|(Θ).
(ii) Edges between the copied polygons derived from the same

waypoint candidate. For any two subsets, e.g., Si and Sj ,

following Section 5.2, the number of copied polygons is

|Si ∩ Sj |, and there are 2 · 360°/Θ directed edges between

each pair of the copied polygons, so the total number of this

type of edges is:

∑

∀i,∀j,i 6=j

2 ·
360°

Θ
· |Si ∩ Sj |

=
720°

Θ
(
∑

∀i

|Si| − |
⋃

∀i

Si|) =
720°

Θ
(Ŝ − S̃).

(iii) Edges between the polygons derived from different waypoint

candidates. For any two subsets, e.g., Si and Sj , the number

of copied polygons is |Si ∩ Sj |. Based on Section 5.1,

between Si and Sj , there are 2(|Si|·|Sj |−|Si∩Sj |) directed

edges, so the total number of this type of edges is:
∑

∀i,∀j,i 6=j

2(|Si| · |Sj | − |Si ∩ Sj |)

=2(((
∑

∀i

|Si|)
2 −

∑

∀i

|Si|)− (
∑

∀i

|Si| − |
⋃

∀i

Si|))

=2(Ŝ2 − 2Ŝ + S̃).

To summarize, we add up the number of these three types edges

in graph D, that is:

F |E|(Θ) =2 · F |S|(Θ) +
720°

Θ
(Ŝ − S̃) + 2(Ŝ2 − 2Ŝ + S̃)

=
720°

Θ
(2Ŝ − S̃) + 2(Ŝ2 − 2Ŝ + S̃).

Theorem 3. The smaller the Graph Redefinition Approximation

Ratio, the more vertices and edges in the graph D of problem P2.

Proof. Based on Theorem 2, the Graph Redefinition Approxima-

tion Ratio has a tight upper bound, i.e., Rred < Θ/δ where Θ
is one direction range of the polygon in the graph of problem P2

and δ is the minimum turning angle of UAV during its real-world

flight. Clearly, Θ is proportional to Rred for a given δ. From

Lemma 2, we learn that if Θ decreases, then both the number

of vertices F |S|(Θ) and the number of edges F |E|(Θ) increase.

Therefore, Rred and F |S|(Θ)/F |E|(Θ) are negatively correlated.

In other words, the smaller the Graph Redefinition Approximation

Ratio, the more vertices and edges in the graph D.

6.2 Solution to Problem P2

Following the definition of P2, the edge between vertex xp
i and yqj

is denoted as exp
i y

q
j
. Here we define the weight of exp

i y
q
j
∈ E as

cxp
i y

q
j
, and wxp

i y
q
j

represents whether exp
i y

q
j

is in the flight route,

wxp
i y

q
j
=

{
1, edge exp

i y
q
j

is in the route,

0, otherwise.
(15)

Subsequently, all vertices are divided into non-overlapping

subsets, which are included by the set S′ as:

S′ = {S′
p|p = 1, 2, · · · , n} (16)

where any subset S′
p = {xp

i |x ∈ Sp, i = 1, 2, · · · , 8}.

The objective of P2 stated in Definition 6 is to find a feasible

tour with minimum sum of weights in the graph D, equivalent to

the objective of P1 stated in Definition 5 that to find a tour with

constraints to minimize the total UAV energy consumption. Now

we formulate P2 with the objective function and constraints:

(P2) min
∑

xp
i ,y

q
j∈S,e

x
p
i
y
q
j
∈E

cxp
i y

q
j
wxp

i y
q
j
. (17)

s.t.
∑

xp
i ∈S,yq

j∈S,p 6=q

∑

e
x
p
i
y
q
j
∈E

wxp
i y

q
j
≥ 1, for any subsets S

′

p (18)

∑
e
x
p
i
y
q
j
∈E,p 6=q wxp

i y
q
j
≥ 1

∑
e
y
q
j
x
p
i
∈E,p 6=q wyq

jx
p
i
≥ 1



 for all subsets S

′

p. (19)

∑

e
x
p
i
y
q
j
∈E,p 6=q

wxp
i y

q
j
−

∑

e
y
q
j
z
f
k

∈E,q 6=f

wyq
j z

f

k

= 0

for all vertices yqj ∈ S. (20)

∑

xp
i ,Sp∈G

∑

yq
i ,Sq /∈G

∑

e
x
p
i
y
q
j
∈E

wxp
i y

q
j
≥ 1

for all sets G which are subsets of the collection of set S,

2 ≤ |G| ≤ n− 2. (21)

wxp
i y

q
j
∈ {0, 1} for all exp

i y
q
j
∈ E. (22)

6.2.1 Constraints and transformation to GTSP

To facilitate solving the problem P2, we intend to transform it into

the GTSP, which is defined as follows:

Definition 8 (GTSP). [22] Given a complete weighted graph

G = (V,E,w) on n vertices and a partition of V into m sets

PV = {V1, ..., Vm}, where Vi ∩ Vj = ∅ for all i 6= j and

Um
i=1Vi = Vj , find a cycle in G that contains exactly one vertex

from each set Vi, i ∈ 1, ...,m and has minimum length.

There are three constraints imposed to equalize P2 and GTSP:

• Subset coverage. Each subset must be visited at least

once, which means in-edge and out-edge both necessarily

exist in each subset. Eq. (19) unfolds this constraint.

• Tour continuity. Each vertex has the same in-degree as

the out-degree to keep the tour continuous. We can use

Eq. (20) to guarantee the continuity.

• Subloop avoidance. As shown in Fig. 7(a), the tour is

impracticable due to the possible subloops. The constraint

as Eq. (21) is crucial to avoid this case.

However, our solution is not rigorous enough. As shown in

Fig. 7(b), a tour complies the three constraints but is infeasible (a

subloop is marked in blue). To fix this little bug, we modify the

constraint in Eq. (19) as follows:
∑

e
x
p
i
y
q
j
∈E,p 6=q wxp

i y
q
j
= 1

∑
e
y
q
j
x
p
i
∈E,p 6=q wyq

jx
p
i
= 1



 for all subsets S

′

p (23)

where each subset is visited once and only once.

12

(a) (b)

Fig. 7. Two practical cases of subloop in a flight route.

According to the modeling of making turns in Section 5.1, the

edges are formed only between two vertices in the same-index

range. To get closer to GTSP, we add an extra operation to make

the graph a complete one: for any two vertices without connection,

assign them an edge, whose weight is equals to the sum of cost

from one vertex to another. For example, two vertices in different

regular octagons without connection, i.e., xp
i and xq

j , and we can

create an edge xpq
ij , whose weight is the sum of the weights of the

involved edges from xp
i to xq

j .

6.2.2 Large Neighborhood Search based algorithm usage

Now we have converted the original problem to GTSP and there

always exists a feasible tour. Then we can expediently address

our problem by referring to the Large Neighborhood Search based

algorithm [52], where authors provide an effective heuristic library

to solve GTSP efficiently. This library is based on adaptive large

neighborhood search, mainly by iteratively removing and inserting

vertices, to find a well-performing tour.

6.2.3 Time complexity of the proposed algorithm

Recall that an N × M size region is discretized into multiple

g × g size grids and a grid is represented by its grid center, called

a waypoint candidate. From Lemma 2, we have S̃ = |
⋃

∀i Si|,
and Ŝ =

∑
∀i |Si|, where Si is the set of waypoint candidates

covered by PoI i. The following lemma is to analyze S̃ and Ŝ.

Lemma 3.

S̃ = O(
NM

g2
), Ŝ = O(

NMn

g2
).

Proof. Since the total number of waypoint candidates in this

region is NM
g2 , which is larger than |

⋃
∀i Si|, so S̃ = |

⋃
∀i Si| ≤

NM
g2 . Since for each Si, we have |Si| ≤

Ri

g2 , where |Ri| is the

area covered by the range of PoI i. Hence, Ŝ =
∑

∀i |Si| ≤∑
∀i

|Ri|
g2 ≤ NMn

g2 . So we finally have S̃ = O(NM
g2) and

Ŝ = O(NMn
g2).

According to Lemma 3, it takes O(NM
g2) steps to finish the dis-

cretization, and obtain all the waypoint candidates. To extend each

waypoint candidate into an octagon and split the overlapping ones,

it needs O(NMn
g2) steps. Then generating edges and assigning

weight to them takes O(Ŝ2) steps based on Lemma 2. Finally, we

obtain an accessible graph model and refer to algorithm [52] to ad-

dress it which takes O(min{nŜ2, n3Ŝ log n}) time. In short, the

proposed algorithm thus takes O(min{nŜ2, n3Ŝ log n}) time in

total.

7 SIMULATION

In this section, we implement our proposed flight planning al-

gorithm, called the Optimization of Minimum-Energy by Graph

Algorithm (OMEGA). And then conduct simulations to evaluate

the performance of OMEGA. We use a brute-force method, the

Enumerated Optimal Algorithm (EOA), to search for optimal

solutions. We take the running time of EOA as a criterion to

distinguish small scale problems from large scale problems, i.e., if

an optimal solution can be computed by EOA within 500 seconds,

it is a small scale problem; otherwise, it is a large scale problem.

For large scale problems, the Naive Minimum-Energy Algorithm

(NMEA) is used for comparison. To show the energy efficiency

of OMEGA, we add other two variants of OMEGA, denoted as

O1 and O2 respectively, to specify the impact of the key energy

components on the total energy consumption. Moreover, we also

evaluate OMEGA under real-world settings.

7.1 Simulation settings

In our simulation, we code all algorithms by Python3.6. And

simulations are conducted by using off-the-shelf desktop computer

equipped with an Intel(R) Core(TM) i7-8700 CPU @3.20GHz and

16GB RAM running Window10 Professional Edition computing

platform. The detailed simulation parameters are introduced as

follows.

TABLE 2
Simulation parameters

Parameters
V alues Values of small scale Values of large scale

default varying default varying

Side length of region 16 10 to 22 34 22 to 46

Number of PoIs 6 3 to 8 17 11 to 23

Number of waypoints in overlap [6,7] [0,1] to [10,11] [14,15] [8,9] to [20,21]

Radius of the range PoI 2.3 1.5 to 3.9 2.7 1.9 to 4.3

Grid granularity 1.5 unit

Straight flight cost 120J each unit of length

Turning cost 7.64J each degree

Switching cost 900J each time

Based on our energy model of UAV flight introduced in the

previous section, we set the straight flight cost to 120J each unit

of length, the turning cost to 7.64J each degree, and the switching

cost to 900J each time. We discretize the region by setting the

grid granularity g = 1.5 unit. In the simulation, we choose the

following main parameters to study their impact: the number of

PoIs, n; the size of region, N ×N ; the range of the number of the

waypoint candidates in overlap, m; and the radius of the range

of PoI, r. To evaluate their impact on algorithm performance,

we focus on one parameter at a time, by varying its value and

meanwhile fix the other parameters. We set the default value for

n, N , m, r, i.e., when the problem is small scale, set n = 6,

N = 16, m = [6, 7], r = 2.3; when the problem is large scale,

set n = 17, N = 34, m = [14, 15], r = 2.7. Table 2 lists the

main parameters used in simulation. Unless otherwise specified,

these parameters will be adopted in the default setting.

Then we run 100 times in each setting and take the average

result of the 100 instances.

7.2 Results and discussion

7.2.1 Algorithm comparison for small scale problems

When the problem scale is small, we use EOA to get the optimal

result by enumerating all possible paths. The comparison between

our OMEGA and EOA is shown in Fig. 8. As shown in Fig. 8(a),

for both OMEGA and EOA, the longer the side length of region,

the more the UAV energy consumption. Because with a fixed

number of PoIs, the larger region leads to the longer distance,

13

10.0 12.0 14.0 16.0 18.0 20.0 22.0
Side length of region

0

1000

2000

3000

4000

5000

6000

7000

8000

En
er
gy

Co
ns

um
pt
io
n(
J)

OMEGA
EOA

(a)

3.0 4.0 5.0 6.0 7.0 8.0
Number of PoIs in region

0

1000

2000

3000

4000

5000

6000

7000

En
er
gy

Co
ns

um
pt
io
n(
J)

OMEGA
EOA

(b)

[0,1] [2,3] [4,5] [6,7] [8,9] [10,11] [12,13]
Number of waypoints in overlap

0

1000

2000

3000

4000

5000

6000

7000

En
er
gy

Co
ns

um
pt
io
n(
J)

OMEGA
EOA

(c)

1.5 1.7 1.9 2.1 2.3 2.5 2.7
Radius of the range of PoI

0

1000

2000

3000

4000

5000

6000

En
er
gy

Co
ns

um
pt
io
n(
J)

OMEGA
EOA

(d)

Fig. 8. Algorithm performance comparison for small scale problems. In (a), the longer the side length of region, the more energy consumption.
In (b), the more number of PoIs, the more energy consumption. In (c), the energy consumption decreases as the number of waypoints in overlap
increases. In (d), the energy consumption shows a slight decrease when the radius of the range of PoI becomes longer. In all these subplots, the
result of OMEGA is close to that of EOA.

22.0 26.0 30.0 34.0 38.0 42.0 46.0
Side length of region

0

5000

10000

15000

20000

25000

30000

35000

En
er
gy

Co
ns

um
pt
io
n(
J)

OMEGA
NMEA

(a)

11.0 13.0 15.0 17.0 19.0 21.0 23.0
Number of PoIs in region

0

5000

10000

15000

20000

25000

30000

35000

40000

En
er
gy

Co
ns

um
pt
io
n(
J)

OMEGA
NMEA

(b)

[8,9] [10,11] [12,13] [14,15] [16,17] [18,19] [20,21]
Number of waypoints in overlap

0

5000

10000

15000

20000

25000

30000

En
er
gy

Co
ns

um
pt
io
n(
J)

OMEGA
NMEA

(c)

1.9 2.3 2.7 3.1 3.5 3.9 4.3
Radius of the range of PoI

0

5000

10000

15000

20000

25000

30000

En
er
gy

Co
ns

um
pt
io
n(
J)

OMEGA
NMEA

(d)

Fig. 9. Algorithm performance comparison for large scale problems. In (a), for both OMEGA and NMEA, the longer the side length of region, the
more energy consumption. In (b), for both OMEGA and NMEA, the more number of PoIs, the more energy consumption. In (c), for both OMEGA and
NMEA, the energy consumption decreases as the number of waypoints in overlap increases. In (d), for OMEGA, the energy consumption shows a
slight decrease when the radius of the range of PoI becomes longer, but for NMEA, the energy consumption shows a slight increase instead when
the radius change in the same way. In all these subplots, compared to NMEA, OMEGA save almost half of energy consumption.

indicating the UAV needs more energy to visit PoIs. In Fig. 8(b),

as the number of PoIs increases, energy cost increases. Since

the UAV needs to visit more PoIs, more energy is consumed. In

Fig. 8(c), we can see that the number of waypoint candidates in

overlap increases while the energy cost decreases. According to

the parameter setting of simulation, we require an increase in the

number of waypoint candidates in overlap, and we fix the size

of region, the number of PoI and the radius of the range of PoI,

so the PoIs prefer to get closer to generate more waypoints in

overlap during the position randomization process, which makes

flight distance between PoI-visiting shorter to decrease the energy

consumption. Furthermore, thanks to the intelligent strategy of our

OMEGA, when there are more waypoint candidates in overlap

which means more optional routes, i.e., turning or switching PoI-

visiting at overlapping waypoints, it is more likely to get the best

one that has the minimum energy cost. In Fig. 8(d), longer radius

length results in a slight decrease of energy consumption. The

main reason for this tread is that the overlapping area becomes

larger as the radius becomes longer, while the range of the

number of total waypoint candidates is constant, which implies

most waypoint candidates in region are in overlap. According to

Fig. 8(c), we can understand that more candidate overlapping-

waypoints is more likely to derive the optimal result to some

extent. Obviously, the varying tendencies of the two curves are

similar generally in these subplots. To be specific, the performance

of our OMEGA is close to that of EOA on the whole, whose error

is no more than 107%. And there are instances of feasible tours

generated by OMEGA and EOA respectively in Fig. 10, whose

tours are similar.

Furthermore, we compare the execution time of OMEAG and

EOA in these four aspects, and the indicative numerical results

are listed in Table 3. Clearly, in terms of efficiency, OMEGA

outperforms EOA from these four subtables. Specially, when the

radius of the PoI range r = 3.9, the execution time ratio between

EOA and OMEGA is about 1005.9
6.43 ≈ 156; when the number of

PoI n = 8, the execution time ratio between EOA and OMEGA

is even up to 11756.00
2.5 ≈ 5734, which indicates the efficient

performance of OMEGA compared with EOA.

TABLE 3
Algorithm execution time comparison for small scale problems with variables: the side length of region N , the number of PoIs n, the radius of the

PoI range r, and the number of waypoints in overlap I

.

N OMEGA(s) EOA(s)

10 0.69 7.03

12 0.69 8.3

14 0.69 8.99

16 0.77 11.48

18 0.86 12.86

20 0.80 11.32

22 0.87 14.12

n OMEGA(s) EOA(s)

3 0.27 0.07

4 0.42 0.25

5 0.64 0.99

6 0.92 14.28

7 1.07 306.09

8 2.05 11756.00

r OMEGA(s) EOA(s)

1.5 0.21 0.45

1.9 0.36 2.15

2.3 0.77 11.48

2.7 1.63 47.40

3.1 3.09 195.07

3.5 4.47 442.50

3.9 6.43 1005.90

I OMEGA(s) EOA(s)

[0,1] 0.73 8.85

[2,3] 0.71 9.66

[4,5] 0.84 11.86

[6,7] 0.87 12.84

[8,9] 0.98 15.74

[10,11] 1.07 17.79

[12,13] 1.17 20.83

14

(a) (b)

Fig. 10. An example of the feasible tours in a small scale problem. The
tours in (a) and (b) are generated by OMEGA, EOA respectively, and
the two tours are almost coincident in the flight distance, the angle of
turning and the number of PoI-switching waypoints.

7.2.2 Algorithm comparison for large scale problems

When the problem scale is large, it is impossible to enumerate

all routes due to the enormous time complexity. Hence, we verify

the efficiency of OMEGA by comparing it with the NMEA where

only the covered flight distance is considered. The comparison

between OMEGA and NMEA is shown in Fig. 9. The analysis

of the first three subplots of Fig. 9 gives similar conclusions to

those in Fig. 8. For Fig. 9(a), the longer size length of region,

the more energy consumption. For Fig. 9(b), the more number of

PoIs in the region, the more energy consumption. For Fig. 9(c),

with the increment of the number of overlapping-waypoints, the

energy cost is less. However, for Fig. 9(d), the energy consumption

of OMEGA is declining normally while that of NMEA is rising

slightly. One explanation for the trend of NMEA is that most

waypoint candidates are in overlap due to the expansion of the

overlapping area, and the energy cost of NMEA is calculated

without the restriction of switching PoI-visiting cost, so the UAV

prefers to pick these waypoint candidates in overlap without

switching PoI-visiting cost. Whereas, at last we have to calibrate

this type of energy cost by adding the switching PoI-visiting cost

that is not computed during the process of NMEA, so the total

energy cost of NMEA increases inevitably. In short, compared

with NMEA, the high-efficient OMEGA can save nearly 50% of

energy consumption. And there are examples of feasible tours

generated by OMEGA and NMEA respectively in Fig. 11, whose

tours differ significantly.

7.2.3 Algorithm comparison between OMEGA, NMEA, O1

and O2

In previous subsections, it is clear that OMEGA has excellent

performance. To show the energy efficiency of OMEGA more

specifically, we compare OMEGA, NMEA and other two variants

of OMEGA, O1 and O2.

OMEGA without switching PoI-visiting cost restrict(O1):

We ignore UAV switching PoI-visitingt cost on the basis of

OMEGA. In this variant, the total energy consumption is mini-

mized only by straight flight distance and turning angle. According

to the comparison result of OMEGA and O1, we can understand

the impact of switching PoI-visiting cost on the total energy cost.

OMEGA without turning cost restrict(O2): In the similar

way, we skip the turning cost when implementing OMEGA.

This approach optimizes the total energy cost by weighing the

straight flight distance and switching PoI-visiting cost. Then we

can perceive the effect of turning cost by the difference of result

between OMEGA and O2.

(a) (b)

Fig. 11. An example of the feasible tours in a large scale problem. The
tours in (a) and (b) are generated by OMEGA, NMEA respectively. The
two tours are similar in trajectory (flight distance) while different in the
angle of turning and the times of PoI-switching waypoints, resulting in
widely varying energy consumption.

We compute the energy consumption for OMEGA, NMEA,

O1, and O2 respectively, and count the flight distance, turning

angle, and the time of switching PoI-visiting for each algorithm.

The detailed statistics are listed in Table 4.

TABLE 4
Simulation Statistics

Components
Models

OMEGA NMEA O1 O2

Energy consumption 39627.41 60499.79 42556.27 64454.21

Flight distance 119.22 113.88 114.72 117.42

Angle of turning 1144.8 990 910.8 1438.2

Times of PoI-switching 0.47 6.39 7.21 0.07

By comparing the results of these four solutions listed in

Table 4, we can see that NMEA has the shortest flight distance, O1

gets the least tuning angle, and O2 gets the least times of switching

PoI-visiting. While our OMEGA achieves the minimum energy

consumption among these four solutions by tactfully handling

the tradeoff among straight flight, turning and switching PoI-

visiting for UAVs. Another interesting conclusion from Table 4

is that O2 unexpectedly consumes more energy than NMEA. We

calculate the results of O2 and NMEA, and discover that O2 uses

448.2° turning and 3.54 unit of flight distance, just reduces 6.32

times of switching PoI-visiting. This implies that switching PoI-

visiting cost is indispensable in this scenario.

7.3 OMEGA Flight planning in real scenarios

To better reflect the effectiveness of OMEGA in real scenarios, we

make simulations with real-world datasets both in small scale and

large scale.

The Fig. 12(a) demonstrates a small scale scenario example,

whose background is a factory plant of Nanjing Iron and Steel

Group, given several key facilities of the factory, e.g., steel fur-

naces and chimneys. A UAV is dispatched to periodically monitor

these facilities to prevent unexpected production situations, e.g.,

abnormal temperature, humidity or pressure. In our simulation

setting, there are 6 key monitor objects in factory, marked as

blue stars in Fig. 12(a). An efficient-energy UAV trajectory to

execute monitor tasks is devised by OMEGA as the line depicted

in Fig. 12(a). From the flight planning path, it is obvious that the

waypoints in overlapping areas of ranges will also be picked under

the UAV energy consumption tradeoff.

The large scale scenario example is shown in Fig. 12(b), we

utilize an agile and flexible UAV to provide edge computing

timely for ground mobile users, e.g., taxis or buses. Here we

conduct simulations with the taxi dataset in [53], which covers the

15

(a) Chimneys patrol in Nanjing Iron and
Steel Group, China.

01/10/2018 9:30 in Shenzhen, Guangdong Province

(b) UAV-aided edge computing for taxi in Shen-
zhen, China.

Fig. 12. The effect of OMEGA flight planning in real scenario. The tour in (a) is designed for UAV to monitor several key steel furnaces and chimneys
inside factory, while in (b) it shows the UAV flight planning path for serving many ground taxis with edge computing at a given moment.

detailed items of taxis, including the plate number, GPS latitude

and longitude, and operation time, from October 1, 2018 0:00 to

24:00 in Shenzhen, Guangdong. We first filter and extract key

information to determine the proper positions, operation time and

the ranges of each computing offloading task, then by OMEGA

we can get a more practical and efficient-energy tour for UAV to

serve to ground mobile users as the red line plotted in Fig. 12(b).

8 CONCLUSION

In this paper, we formulate a general problem to match more appli-

cation scenarios of UAVs, and we propose the general waypoint-

based PoI-visiting problem. With the investigation of related work,

most existing flight models simplify the UAV energy consumption,

motivating us to build a more practical and accurate one by a set of

real-world experiments. To address this energy minimization prob-

lem, we propose a novel graph-based energy-efficient approach,

utilizing a well-studied classic solution of GTSP to find a tour

with the minimum cost. Our theoretical analysis provides the tight

upper bound for the graph redefinition approximation ratio. We

conduct simulations by comparing with the best and the naive

baseline respectively, to evaluate the performance of OMEGA.

The final result shows that OMEGA is excellent-performance

within 107% of the best result and nearly 50% of energy compared

to the result of a naive algorithm.

ACKNOWLEDGEMENT

This work was supported by the National Key R&D Program

of China Grant 2021YFB2900100, the National Natural Sci-

ence Foundation of China under grants 62072101, 62172091,

61872079, 62072102, 62132009, and 61632008, Jiangsu Provin-

cial Key Laboratory of Network and Information Security Grant

BM2003201, and Key Laboratory of Computer Network and

Information Integration of the Ministry of Education of China

Grant 93K-9, partially supported by the Fundamental Research

Funds for the Central Universities.

REFERENCES

[1] J. Gong, T. Chang, C. Shen, and X. Chen, “Flight time minimization
of UAV for data collection over wireless sensor networks,” IEEE J. Sel.

Areas Commun., vol. 36, no. 9, pp. 1942–1954, 2018.

[2] C. Zhan, Y. Zeng, and R. Zhang, “Energy-efficient data collection in UAV
enabled wireless sensor network,” IEEE Wirel. Commun. Lett., vol. 7,
no. 3, pp. 328–331, 2018.

[3] J. Lyu, Y. Zeng, and R. Zhang, “Cyclical multiple access in UAV-aided
communications: A throughput-delay tradeoff,” IEEE Wirel. Commun.

Lett., vol. 5, no. 6, pp. 600–603, 2016.

[4] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned
aerial vehicles (UAVs) for energy-efficient internet of things communi-
cations,” IEEE Trans. Wirel. Commun., vol. 16, no. 11, pp. 7574–7589,
2017.

[5] M. Chen, W. Liang, and Y. Li, “Data collection maximization for UAV-
enabled wireless sensor networks,” in 29th International Conference on

Computer Communications and Networks (ICCCN). IEEE, 2020, pp.
1–9.

[6] Y. Li, W. Liang, W. Xu, Z. Xu, X. Jia, Y. Xu, and H. Kan, “Data collection
maximization in IoT-sensor networks via an energy-constrained UAV,”
IEEE Trans. Mob. Comput., pp. 1–1, 2021.

[7] C. Luo, M. N. Satpute, D. Li, Y. Wang, W. Chen, and W. Wu, “Fine-
grained trajectory optimization of multiple UAVs for efficient data
gathering from WSNs,” IEEE/ACM Trans. Netw., vol. 29, no. 1, pp. 162–
175, 2021.

[8] J. Zhang, Z. Li, W. Xu, J. Peng, W. Liang, Z. Xu, X. Ren, and
X. Jia, “Minimizing the number of deployed UAVs for delay-bounded
data collection of IoT devices,” in 40th IEEE Conference on Computer

Communications (INFOCOM). IEEE, 2021, pp. 1–10.

[9] D. Vallejo, J. J. Castro-Schez, C. Glez-Morcillo, and J. Albusac, “Multi-
agent architecture for information retrieval and intelligent monitoring by
UAVs in known environments affected by catastrophes,” Eng. Appl. Artif.

Intell., vol. 87, 2020.

[10] A. Khochare, Y. Simmhan, F. B. Sorbelli, and S. K. Das, “Heuristic
algorithms for co-scheduling of edge analytics and routes for UAV
fleet missions,” in 40th IEEE Conference on Computer Communications

(INFOCOM), 2021, pp. 1–10.

[11] Q. Guo, J. Peng, W. Xu, W. Liang, X. Jia, Z. Xu, Y. Yang, and M. Wang,
“Minimizing the longest tour time among a fleet of UAVs for disaster
area surveillance,” IEEE Trans. Mob. Comput., pp. 1–1, 2020.

[12] Y. Tang, Y. Miao, A. Barnawi, B. A. Alzahrani, R. Alotaibi, and
K. Hwang, “A joint global and local path planning optimization for UAV
task scheduling towards crowd air monitoring,” Comput. Networks, vol.
193, p. 107913, 2021.

[13] S. Hosseinalipour, A. Rahmati, D. Y. Eun, and H. Dai, “Energy-aware
stochastic UAV-assisted surveillance,” IEEE Trans. Wirel. Commun.,
vol. 20, no. 5, pp. 2820–2837, 2021.

[14] Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, and G. Y. Li, “Joint offloading
and trajectory design for UAV-enabled mobile edge computing systems,”
IEEE Internet Things J., vol. 6, no. 2, pp. 1879–1892, 2019.

[15] Y. K. Tun, Y. M. Park, N. H. Tran, W. Saad, S. R. Pandey, and C. S.
Hong, “Energy-efficient resource management in UAV-assisted mobile
edge computing,” IEEE Commun. Lett., vol. 25, no. 1, pp. 249–253,
2021.

[16] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and A. Nallanathan,
“Deep reinforcement learning based dynamic trajectory control for UAV-

16

assisted mobile edge computing,” IEEE Trans. Mob. Comput., pp. 1–1,
2021.

[17] X. Zhang and L. Duan, “Fast deployment of UAV networks for optimal
wireless coverage,” IEEE Trans. Mob. Comput., vol. 18, no. 3, pp. 588–
601, 2019.

[18] W. Chen, Z. Su, Q. Xu, T. H. Luan, and R. Li, “VFC-based cooperative
UAV computation task offloading for post-disaster rescue,” in 39th IEEE

Conference on Computer Communications (INFOCOM). IEEE, 2020,
pp. 228–236.

[19] H. Huang and A. V. Savkin, “Viable path planning for data collection
robots in a sensing field with obstacles,” Comput. Commun., vol. 111,
pp. 84–96, 2017.

[20] “Mission Planning - Copter documentation,”
https://ardupilot.org/copter/docs/common-mission-planning.html,
accessed Oct. 16, 2021.

[21] “Onboard SDK - DJI Developer,” https://developer.dji.com/cn/onboard-
sdk, accessed Oct. 16, 2021.

[22] S. Piao, Z. Ba, L. Su, D. Koutsonikolas, S. Li, and K. Ren, “Automating
CSI measurement with UAVs: from problem formulation to energy-
optimal solution,” in 2019 IEEE Conference on Computer Communi-

cations (INFOCOM). IEEE, 2019, pp. 2404–2412.

[23] C. Wang, F. Ma, J. Yan, D. De, and S. K. Das, “Efficient aerial data
collection with UAV in large-scale wireless sensor networks,” IJDSN,
vol. 11, pp. 286 080:1–286 080:19, 2015.

[24] S. Ahmed, A. Mohamed, K. A. Harras, M. Kholief, and S. Mesbah,
“Energy efficient path planning techniques for UAV-based systems with
space discretization,” in IEEE Wireless Communications and Networking

Conference (WCNC). IEEE, 2016, pp. 1–6.

[25] Z. Huang, W. Wu, F. Shan, Y. Bian, K. Lu, Z. Li, J. Wang, and J. Wang,
“Couas: Enable cooperation for unmanned aerial systems,” ACM Trans.

Sens. Networks, vol. 16, no. 3, pp. 24:1–24:19, 2020.

[26] F. Shan, J. Luo, R. Xiong, W. Wu, and J. Li, “Looking before crossing:
An optimal algorithm to minimize UAV energy by speed scheduling with
a practical flight energy model,” in 39th IEEE Conference on Computer

Communications (INFOCOM). IEEE, 2020, pp. 1758–1767.

[27] J. Modares, F. Ghanei, N. Mastronarde, and K. Dantu, “UB-ANC
planner: Energy efficient coverage path planning with multiple drones.”
IEEE, 2017, pp. 6182–6189.

[28] K. Goss, R. Musmeci, and S. Silvestri, “Realistic models for
characterizing the performance of unmanned aerial vehicles,”
in 26th International Conference on Computer Communication

and Networks, ICCCN 2017, Vancouver, BC, Canada, July 31

- Aug. 3, 2017. IEEE, 2017, pp. 1–9. [Online]. Available:
https://doi.org/10.1109/ICCCN.2017.8038444

[29] H. V. Abeywickrama, B. A. Jayawickrama, Y. He, and E. Dutkiewicz,
“Empirical power consumption model for uavs,” in 88th IEEE

Vehicular Technology Conference, VTC Fall 2018, Chicago, IL, USA,

August 27-30, 2018. IEEE, 2018, pp. 1–5. [Online]. Available:
https://doi.org/10.1109/VTCFall.2018.8690666

[30] Y. Zeng, R. Zhang, and T. J. Lim, “Throughput maximization for UAV-
enabled mobile relaying systems,” IEEE Trans. Commun., vol. 64, no. 12,
pp. 4983–4996, 2016.

[31] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication
design for multi-UAV enabled wireless networks,” IEEE Trans. Wirel.

Commun., vol. 17, no. 3, pp. 2109–2121, 2018.

[32] C. Zhan and Y. Zeng, “Aerial–ground cost tradeoff for multi-UAV-
enabled data collection in wireless sensor networks,” IEEE Transactions

on Communications, vol. 68, no. 3, pp. 1937–1950, 2020.

[33] B. Zhou, F. Gao, J. Pan, and S. Shen, “Robust real-time UAV replanning
using guided gradient-based optimization and topological paths,” in 2020

IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 1208–1214.

[34] “QoS-aware UAV coverage path planning in 5G mmWave network,”
Computer Networks, vol. 175, p. 107207, 2020.

[35] C. H. Liu, Z. Chen, and Y. Zhan, “Energy-efficient distributed mobile
crowd sensing: A deep learning approach,” IEEE J. Sel. Areas Commun.,
vol. 37, no. 6, pp. 1262–1276, 2019.

[36] X. Wang, S. Garg, H. Lin, G. Kaddoum, J. Hu, and M. F. Alhamid, “An
intelligent UAV based data aggregation algorithm for 5G-enabled internet
of things,” Comput. Networks, vol. 185, p. 107628, 2021.

[37] P. A. Apostolopoulos, M. Torres, and E. E. Tsiropoulou, “Satisfaction-
aware data offloading in surveillance systems,” ser. CHANTS’19. As-
sociation for Computing Machinery, 2019.

[38] M. Samir, D. Ebrahimi, C. Assi, S. Sharafeddine, and A. Ghrayeb,
“Leveraging UAVs for coverage in cell-free vehicular networks: A deep
reinforcement learning approach,” IEEE Trans. Mob. Comput., vol. 20,
no. 9, pp. 2835–2847, 2021.

[39] J. Akshya and P. Priyadarsini, “Graph-based path planning for intelligent
UAVs in area coverage applications,” Journal of Intelligent & Fuzzy

Systems, vol. 39, no. 6, pp. 8191–8203, 2020.
[40] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient

UAV control for effective and fair communication coverage: A deep
reinforcement learning approach,” IEEE J. Sel. Areas Commun., vol. 36,
no. 9, pp. 2059–2070, 2018.

[41] L. Zhang, A. Celik, S. Dang, and B. Shihada, “Energy-efficient trajectory
optimization for UAV-assisted iot networks,” IEEE Trans. Mob. Comput.,
pp. 1–1, 2021.

[42] M. B. Ghorbel, D. Rodriguez-Duarte, H. Ghazzai, M. J. Hossain, and
H. Menouar, “Joint position and travel path optimization for energy
efficient wireless data gathering using unmanned aerial vehicles,” IEEE

Trans. Veh. Technol., vol. 68, no. 3, pp. 2165–2175, 2019.
[43] X. Xu, H. Zhao, H. Yao, and S. Wang, “A blockchain-enabled energy-

efficient data collection system for UAV-assisted IoT,” IEEE Internet

Things J., vol. 8, no. 4, pp. 2431–2443, 2021.
[44] Y. Li, Y. Fang, and L. Qiu, “Joint computation offloading and communi-

cation design for secure UAV-enabled MEC systems,” in IEEE Wireless

Communications and Networking Conference (WCNC). IEEE, 2021,
pp. 1–6.

[45] D. Wei, J. Ma, L. Luo, Y. Wang, L. He, and X. Li, “Computation of-
floading over multi-UAV mec network: A distributed deep reinforcement
learning approach,” Computer Networks, vol. 199, p. 108439, 2021.

[46] R. Xiong and F. Shan, “Dronetank: Planning UAVs’ flights and sensors’
data transmission under energy constraints,” Sensors, vol. 18, no. 9, p.
2913, 2018.

[47] F. Morbidi, R. Cano, and D. Lara, “Minimum-energy path generation for
a quadrotor UAV,” in 2016 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2016, pp. 1492–1498.
[48] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with

trajectory optimization,” IEEE Trans. Wirel. Commun., vol. 16, no. 6,
pp. 3747–3760, 2017.

[49] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless
communication with rotary-wing UAV,” IEEE Trans. Wirel. Commun.,
vol. 18, no. 4, pp. 2329–2345, 2019.

[50] J. Huang, F. Shan, R. Xiong, Y. Shao, and J. Luo, “Energy-efficient uav
flight planning for a general poi-visiting problem with a practical energy
model,” in 2021 International Conference on Computer Communications

and Networks (ICCCN), 2021, pp. 1–10.
[51] C. Noon and J. Bean, “An efficient transformation of the generalized

traveling salesman problem,” Information Systems and Operational Re-

search, vol. 31, 02 1993.
[52] S. L. Smith and F. Imeson, “GLNS: an effective large neighborhood

search heuristic for the generalized traveling salesman problem,” Comput.

Oper. Res., vol. 87, pp. 1–19, 2017.
[53] “Operating vehicle GPS data,” https://opendata.sz.gov.cn/data/dataSet/

toDataDetails/29200 00403602, 2018.

Feng Shan received the Ph.D. degree in com-
puter science from Southeast University, Nan-
jing, China, in 2015. He was a visiting student
with the School of Computing and Engineering,
University of Missouri-Kansas City, Kansas City,
MO, USA, from 2010 to 2012. He is currently
an Associate Professor with the School of Com-
puter Science and Engineering, Southeast Uni-
versity. His research interests include the areas
of Internet of Things, wireless networks, swarm
intelligence, and algorithm design and analysis.

Jianping Huang received the BS degree from
Nanjing University of Science and Technology,
China in 2019, and the MS degree in com-
puter science from Southeast University, China
in 2022. She is currently working in Huawei
Technologies Co. Ltd. Her research interests are
in energy consumption of UAV, UAV scheduling
and flight planning.

17

Runqun Xiong received the PhD degree in com-
puter science from Southeast University. He was
with the European Organization for Nuclear Re-
search as a Research Associate for the AMS-02
experiment from 2011 to 2012. He is currently an
associate professor with the School of Computer
Science and Engineering, Southeast University,
China, where he is involved in AMS-02 data
processing at the AMS Science Operations Cen-
ter. His current research interests include cloud
computing, industrial Internet, and drone-based

wireless communication systems. He is a member of the ACM and the
China Computer Federation.

Fang Dong is currently a professor in School of
Computer Science and Engineering, Southeast
University, China. He received his B.S. and M.S.
degrees in Computer Science from Nanjing Uni-
versity of Science & Technology, China in 2004
and 2006, respectively, and received his Ph.D.
degree in Computer Science from Southeast
University in 2011. His current research interests
include edge intelligence, cloud computing and
Industrial Internet. He is a member of both IEEE
and ACM, he also served as the co-chair of ACM

Nanjing Chapter and the general secretary of ACM SIGCOMM China.

Junzhou Luo (Member, IEEE) received the
B.Sc. degree in applied mathematics and the
M.S. and Ph.D. degrees in computer network, all
from Southeast University, China, in 1982, 1992,
and 2000, respectively. He is a full professor
in the School of Computer Science and Engi-
neering, Southeast University. He is a member
of the IEEE Computer Society and co-chair of
IEEE SMC Technical Committee on Computer
Supported Cooperative Work in Design, and he
is a member of the ACM and chair of ACM

SIGCOMM China. His research interests are next generation network
architecture, network security, cloud computing, and wireless LAN.

Suyang Wang received the BS degree in com-
puter science from Nanjing University of Posts
and Telecommunications, China, in 2011. He is
currently pursuing the Ph.D. degree in computer
science and engineering at Southeast Univer-
sity, China. He is currently working in Jiangsu
Jinheng Information Technology Co., Ltd. His
research interests are in the areas of cloud com-
puting, Internet of Things, mobile edge comput-
ing, algorithm design and analys.

