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In the past decade, unmanned aircraft systems (UASs) have been widely used in various civilian applications,

most of which involve only a single unmanned aerial vehicle (UAV). In the near future, more and more UAS

applications will be facilitated by the cooperation of multiple UAVs. In such applications, it is desirable to uti-

lize a general control platform for cooperative UAVs. However, existing open-source control platforms cannot

fulfill such a demand because (1) they only support the leader-follower mode, which limits the design options

for fleet control, (2) existing platforms can support only certain type of UAVs and thus lack compatibility, and

(3) these platforms cannot accurately simulate a flight mission, which may cause a big gap between simu-

lation and real-world flight. To address these issues, we propose a general control and monitoring platform

for cooperative UAS, namely, CoUAS, which provides a set of core cooperation services of UAVs, including

synchronization, connectivity management, path planning, energy simulation, and so on. To verify the ap-

plicability of CoUAS, we design and develop a prototype in which an embedded path planning service is

provided to complete any task with the minimum flying time while considering the network connectivity

and coverage. Experimental results by both simulation and field test demonstrate that the proposed system

is viable.
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1 INTRODUCTION

An unmanned aircraft system (UAS) consists of one or more unmanned aerial vehicles (UAVs),
a ground control station (GCS), and a communication system among them. In recent years, UAS
with a fleet of UAVs, especially multi-rotor–based drones, has attracted significant attention from
federal agencies, industry, and academia. Many applications can be facilitated by collaborative
UAVs [9, 14–16, 21]. For example, in a video surveillance application, multiple UAVs can quickly
scan a given area with the help of advanced video processing technologies [18]. Nevertheless,
to successfully deploy a multi-UAV application and enable the cooperation among UAVs, many
challenging issues must be solved, such as flight control, reliability, safety, and so on [9].

Clearly, to facilitate multi-UAV applications, it is desirable to utilize a general platform to con-
trol and monitor UAVs, as illustrated in Figure 1. In the literature, there exist some popular con-
trol platforms for UAVs, i.e., GCSs, including Mission Planner [20], QGroundControl [7], and DJI
FlightHub [6]. Although all of these GCSs support the basic flight control functionalities, such as
flight planning by editing waypoints, communication with UAVs, user-friendly GUIs, flight trajec-
tory displaying on a map, and real-time vehicle status monitoring, the following aspects limit their
applicability as general control and monitoring platforms for cooperative UAVs.

• Only leader-follower mode is enabled in the existing GCSs. Though leader-follower mode
makes path planning much easier, it cannot fully utilize all UAVs in a fleet to complete a
complex task at the earliest time or with shortest flying distance.

• Each GCS only supports a specific set of UAVs or UAV flight controllers. For example, Mis-
sion Planner is designed primarily for ArduPilot hardwares and firmwares; QGroundCon-
trol only supports UAVs that communicate using the MAVLink protocol; the DJI FlightHub
interacts with DJI’s own products only.

• There is a lack of energy simulation module in existing GCSs. Without energy simulation
module, existing GCSs cannot predict energy consumption through simulation. Thus, the
feasibility of a flight cannot be tested before UAVs take off. As a result, some flights may
have to be aborted before their tasks are completed due to early energy depletion.

To this end, we propose CoUAS—which is a control and monitor platform that enables easy-to-
implement UAV cooperation—to address the aforementioned limitations. Specifically, to address
the first limitation and allow UAVs in a fleet to maximize the fleet efficiency, we propose a more
generic path planning framework which enables cooperative path planning through swarm func-
tions (e.g., synchronizations, connectivity maintenance) and an embedded path planning service
for the multi-UAV cooperation that takes both the UAV network connectivity and coverage into
consideration.

To address the second limitation, we provide the hardware-independence to each UAV by intro-
ducing a companion Linux-kernel device, which serves as a middleware to interact with UAV au-
topilots. Since almost every commodity provider and open-source community offers Linux-based
SDK for UAV flight control, such UAV companion devices hide the hardware and software differ-
ence of UAVs from different manufacturers. Hence, our CoUAS platform is generic enough to work
with various UAVs, regardless of their hardwares, firmwares, and communication protocols.

To address the third limitation, we add an energy simulation module to the CoUAS platform. To
make the simulation reliable and close to the real-world flight, we make efforts for energy predic-
tion, which can avoid the task abortions in the field. In a fleet with heterogeneous drones, different
UAVs may consume different amount of energy even when they fly at the same speed/cover the
same distance. Our platform provides an accurate energy model tailored to different types of UAVs,
ensuring the feasibility of the real flight under planned paths.
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Fig. 1. Architecture of the UAV fleet platform.

Table 1. Comparison of Functionalities among CoUAS and Popular GCSs

Mission
Planner

MAV
Proxy

DJI Flight
Hub

QGround
Control

APM
Planner 2 CoUAS

GUI � × � � � �
Single-UAV Simulation � � � � � �
UAV APIs1 � � × × × �
GUI APIs2 × × × × × �
Multi-UAV Simulation × × × × × �
Swarm APIs3 × × × × × �
Hadware-independent × × × × × �
Energy-consumption
model

× × × × × �

1Interfaces that enable developers to communicate with both UAV and the platform.
2Functions that help developers create and control GUI to interact with users and handle the inputs.
3Functions that facilitate the cooperation of UAVs.

The key differences of functionalities among CoUAS and popular GCSs are summarized in
Table 1. Besides the aforementioned functionalities, CoUAS also offers other features such as path
planning for connected fleet, GUI APIs, UAV APIs, and simulation for multiple UAVs, based on
which, we implement some basic modules, such as agent manager, emergency monitor, and mes-
sage center, for ease of application development. A developer can use our platform to achieve rapid
development without having to implement the underlying modules.

Our contributions can be summarized as follows:

• CoUAS has the advantage to provide effective cooperation services and manage sophisti-
cated networking protocols. The UAV agent developed in CoUAS includes an independent

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 24. Publication date: May 2020.
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middleware that can run on a general operating system. This implies that CoUAS can sup-
port not only existing mainstream protocols, but also any specialized airborne communica-
tion protocols proposed and developed in the future.

• In addition to the primary cooperation services, CoUAS further embeds path planning ser-
vice for a fleet, e.g., connectivity maintenance and synchronization during the flight. By
taking points to be visited and the number of UAVs as inputs, the path planning service can
generate the initial path plan so that the task can be completed at the earliest time while
maintaining the connectivity among UAVs. The planned path information is then converted
to a series of control commands and disseminated to individual UAVs. When the path is im-
paired due to environmental factors, e.g., wind disturbance, the planned path can be revised
and updated.

• CoUAS provides interfaces to incorporate trained energy models as well as modules to train
energy models for different types of UAVs. By collecting energy data through historical
flying tasks, we have learned an energy model for Pixhawk-Hexa UAVs. Comparing the
simulation results with the field test results, the trained energy model can achieve 94.26%
accuracy.

• CoUAS can accurately simulate a flight mission. Moreover, CoUAS supports an easy switch
between simulations and field tests during the execution of a task. These advantages come
from the system design, where the UAV agent serves as a middleware to hide the UAV
hardware difference. As a result, we can replace any UAV models without affecting other
parts of the platform, and also use the UAV simulator to conduct simulations prior to the
deployment. A demo and the source code of the platform are available for public access in
https://github.com/whxru/CoUAS.

The rest of the article is organized as follows: In Section 2, we elaborate on the design and
implementation of a prototype. In Section 3, we introduce the main algorithm of the embedded
path planning service. To verify the applicability of the proposed system, we then run the algorithm
in both simulation and real world environment, the results of which are shown in Section 4. Finally,
we discuss related work in Section 5, before concluding the article in Section 6.

2 COUAS SYSTEM DESIGN AND IMPLEMENTATION

The CoUAS platform consists of two types of components: the UAV agent installed in each UAV
and the flight monitor operating on a ground station, as illustrated in Figure 2. In this section,
we present the implementation details of the UAV agent and the flight monitor on the CoUAS
platform.

2.1 The UAV Agent

A typical UAV or drone system consists of motors, flight control system, gyroscope, compass,
GPS, remote control, and battery. The main task of the flight control system is to stabilize the
vehicle and control its movement through the control of motors, based on the information from
gyroscope, compass, and GPS. The flight control system also provides the drone information and
control interfaces to external devices by a pre-defined protocol. As shown in Figure 3, the flight
controllers on our current platform are the APM2.8 board and Pixhawk HEXA board. We further
install a Raspberry Pi 3 motherboard (RPi) as the mounted Linux-kernel device to run the UAV
agent program. The UAV agent is responsible to handle three important types of information or
messages, including vehicle status, device control, and exceptions. UAV APIs that communicate
between the flight control board and the monitor are provided. The detailed illustration of the
UAV agent and its interaction with the UAV flight controller are illustrated in Figure 4.
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Fig. 2. Illustration of our proposed CoUAS platform.

Fig. 3. Hardware components in the CoUAS platform.

2.1.1 Status Information Handling. To be compatible to various underlying flight control boards
with hardware differences, we access and update the flight status information through SDKs be-
tween the flight control module and the UAV agent program. UAV’s status information needs to
be transmitted to the flight monitor on the ground. Prior to the transmission, the UAV agent pe-
riodically parses the flight status (from SDKs) into the formats needed by the exception monitor
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Fig. 4. The detailed illustration of the UAV agent and its interaction with the UAV flight controller.

and the information sender. The information sender further converts it to a character stream for
the transmission.

Although the APM2.8 board and Pixhawk HEXA board are used as the flight control in the
current CoUAS implementation, our UAV agent design can essentially work with any mainstream
UAV flight controllers, because the UAV agent program serves as the middleware that hides the
UAV difference from the rest parts of the platform, including the flight monitor. Consequently, for
UAVs that utilize other flight controllers, our UAV agent can bridge them to the flight monitor,
since almost every commodity provider and open-source community offers Linux-based SDK for
UAV flight control.

2.1.2 Control Message Handling. The control message from the flight monitor (on the ground)
is transmitted in the format of a character stream, which flows to the message listener of the UAV
agent on RPi. There are two types of control messages in CoUAS: control command and param-

eter setting. For the former type, commands will be appended to a First-In-First-Out queue. The
UAV agent has a command handler that can convert each command into the format that is exe-
cutable by the flight control module. For the latter type, parameters such as geo-fence boundaries,
communication range, and battery life can be handled by the parameter setting message.

2.1.3 Exception Monitoring. The UAV agent also has an exception monitor module and the
flight status information is periodically sent to this module for inspection. As a result, the exception
monitor can track vehicle’s status changes and monitor the emergencies. In case any emergency
occurs, the exception monitor either delivers high-priority commands to the flight controller or
reports to the flight monitor through the information sender. Exceptions in CoUAS include low
battery, crossing the geo-fence boundary, bad health of connection to the monitor application, and
so on.

2.2 The Flight Monitor

The main task of the flight monitor is to communicate with each individual UAV and further offer
a series of inevitable services for their cooperation. In addition, the flight monitor also provides
the interfaces to interact with upper-layer applications and end-users through APIs and GUI, re-
spectively. Figure 5 demonstrates the GUI from the flight monitor in CoUAS platform.

2.2.1 Cooperation Services. According to the information received from each UAV, as illustrated
in Figure 6, the service controller in the flight monitor could generate control messages to enable
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Fig. 5. Example of the GUI of the flight monitor.

Fig. 6. The detailed illustration of the flight monitor and its interaction with UAV agents and applications.

the following cooperation services. The control messages are high-priority commands to be sent
by the message senders through the message distributor.

• Connectivity maintenance: CoUAS enables to connect all UAVs as well as the flight monitor
by configuring networking services (such as OLSR) and all the connected UAVs are man-
aged by the agent manager. If the connectivity quality between some UAVs is weak or the
transmission errors occur, such exceptions will be thrown and delivered back to the flight
monitor to adjust the locations of the UAVs.

• Path planning: A multi-UAV fleet usually needs to visit a target area collaboratively. The
path planning service can well schedule the trajectory of each UAV so the fleet can move
with connectivity and complete the task from applications at an earlier time. Typically, a set
of targets to be covered is passed to this service for processing through GUI or API. Once
path planning is done, the generated path will be translated into a sequence of tasks/actions
to be executed by each UAV. The algorithm of path planning will be detailed in Section 3.

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 24. Publication date: May 2020.
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• Synchronization: We also need a sequence of synchronization values to indicate the status
of each UAV and support the connectivity maintenance and cooperation. Each synchro-
nization value is thus a Boolean type, where “true” means a UAV needs to synchronize with
other UAVs when finishing the current task.

• Divergence avoidance: Due to the environmental influence (e.g., the wind), UAVs may di-
verge from their planned trajectories or the original location while hovering in the air. By
comparing the real-time trajectory with the planned result, the divergence can be captured
and further calibrated.

• Collision avoidance: GPS is widely used to obtain UAV’s location. Although GPS is not
accurate enough to precisely determine whether two UAVs collided, the collision can be
avoided by checking the velocity vectors of any two UAVs and calculating their mutual
distances, which should have a sufficient margin for the collision avoidance.

2.2.2 API Interaction. The upper-level user applications can choose to use swarm APIs to im-
plement the aforementioned services. Swarm APIs are implemented mainly by the message center,
which handles and delivers information and messages bidirectionally. As shown in Figure 6, the
Information Parser module handles every status information from drones, and the Message Dis-
tributor module is responsible for handling all control messages to the UAVs. Hence, the status
APIs that provide the UAV status information are integrated into the Information Parser and the
control APIs that provide the control function are integrated into Message Distributor. To satisfy
specific requirements on interacting with users of different tasks, GUI APIs help the developer
quickly create visual interfaces are also provided.

2.2.3 File Interaction. The upper-level user applications can also choose to interact with the
flight monitor through task files or target files in CoUAS. A task file is an ordered list of actions,
while an action consists of a set of key-value pairs. There are two types of pairs, e.g., compulsory
pair and optional pair. Compulsory pairs appear in every action, which define the basic of the
action. Examples of compulsory pairs include: basic action and its type, connection ID and its
value, synchronization and its Boolean value. Optional pairs are important supplementary to the
compulsory pairs, but do not necessarily appear in every action. Example of optional pairs include:
relative distance and its value, absolute destination and its value. A target file is actually the input
of the embedded path planning service that defines a set of targets the user wants to scan with the
UAV fleet. The file contains a list of target positions and other configurations such as maximum
distance for each pair of UAVs.

2.2.4 UAV Communications. CoUAS enables UAVs as well as the flight monitor to be connected
by a high performance Wi-Fi for both the data plane and the control plane. Through the Wi-Fi
network, TCP connections are set up for data and control transmission. Each packet is composed
of the header and the body. To distinguish different types of packets in CoUAS, we specify a field
in the packet header and define seven types of packets, as shown in Table 2. The packet body
contains important information, e.g., actions in a sub-task, center position, and radius of the geo-
fence. To support more functions in the future, new types of packets can be defined and added. As
UAV agents run on Linux-kernel devices, CoUAS also supports other networking scheme such as
the optimized link state routing protocol (OLSR) [4], which is very common for setting a wireless
mesh network.

2.2.5 Synchronization. To support the cooperation and smoothly execute the tasks cross UAVs,
different UAVs synchronize with each other regularly to cope with asynchronous situations
(e.g., location deviation, low connectivity quality). The basic idea of the synchronization mech-
anism is to force UAVs to start their remaining missions simultaneously and synchronize their
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Table 2. Types of Packets

Value Description

0 Request of the connection ID
1 Response to the request of connection ID
2 Report the status of UAV
3 Set the geo-fence
4 Perform action(s)
5 The synchronization signal
6 Signal of closing connection

movement periodically. The accumulated deviations since last synchronization are expected to be
calibrated. For example, when a UAV fleet moves with the same speed and direction, their relative
positions might vary due to wind disturbance. Thus, we need to periodically adjust their positions.
To achieve synchronization, a task assigned to each UAV is divided into a sequence of small sub-
tasks, referred to as steps, where each step contains at most one action. When synchronization
index is set to be true, a UAV will be synchronized at the end of the current step (before entering
the next step). After the current step is completed, the UAV agent sends a synchronization message
to notify the flight monitor that it is ready for the next step and waits until it receives a confir-
mation message from the monitor. From the perspective of the flight monitor, after collecting all
synchronization messages, the flight monitor sends confirmation to all the UAVs where all UAVs
waiting for confirmation can then start their next steps. Thus, synchronization can be achieved.

2.2.6 Energy Simulation. In the energy simulation, the predicted energy consumption of a flight
in the simulation mode must be able to reflect the situation of real flight. To calibrate the gap
between the simulator and the real flight, we train a model by developing a two-step learning
framework. The first learning step is to learn a model that maps flying time and distance in real
flights to energy consumption. This model is trained through extensive field tests using the non-
linear kernel ridge regression. The flying time and distance generated in the simulations might be
different from the flying time and distance in real flights. To calibrate such a gap, we further learn
another model to map flying time and distance in simulation to flying time and distance in real
flights. To this end, we apply a simple linear regression and learn the parameters that reflect the
respective weights/importance of simulated and real flying time/distance. With such a two-step
learning model, we are able to map the flying time and distance in simulations to its expected
energy consumption with high accuracy.

3 PATH PLANNING WITH CONNECTIVITY AND COVERAGE CONSTRAINTS

In this section, we will detail the algorithm of aforementioned path planning service for the multi-
UAV cooperation by considering both the UAV network connectivity and coverage. We will first
introduce the problem, then present a near optimal solution and its performance bound.

3.1 Target-point Visiting Problem Formulation

Assume that in a two-dimensional area, a set of target points need to be visited/covered by any
UAV of a fleet. Let the point set be P = {p1,p2, . . . ,pn }, where pi = (xi ,yi ) refers to the position
of the ith target point. Let U = {u1,u2, . . . ,um } be a set of m UAVs. We assume that these UAVs
can move freely and we do not consider the vertical movement. At time slot t , the position of uj is
denoted by uj,t = (x j,t ,yj,t ), t ∈ [0,T ). If one UAV uj passes through target point pi , we say that

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 24. Publication date: May 2020.



24:10 Z. Huang et al.

Table 3. Notations

Symbol Semantics

P set of target points
pi ith target point
xi horizontal position of pi

xi vertical position of pi

U set of UAVs
ui ith UAV

uj,t position of uj at time t
x j,t horizontal position of uj at time t
yj,t vertical position of uj at time t
d distance a UAV can move during a flight
ω UAV’s transimission range

xi, j,t whether the distance between ui and uj is less than ω at time t
yi, j,t whether target point pi is scanned by uj at time t

Lj total moving distance of uj

pi is covered (or scanned) by uj . The notations are summarized in Table 3. Note, we assume all
UAVs move at a constant speed in the planning stage. If a UAV’s velocity changes due to wind
disturbance during a flight journey, such a change can be captured by the monitoring module and
replanning will be triggered.

Since the flight speed of the UAV is limited, the distance that a UAV can move during a time unit
should satisfy the speed constraint,

d (uj,t ,uj,t+1) ≤ dmax , ∀uj ∈ U , ∀t ∈ [0,T ), (1)

where dmax is the largest distance that a UAV can move within a time slot.
During a flight, a UAV needs to keep connected with at least one UAV in the fleet or the ground

controller. This ensures the information captured by the UAV can be quickly transmitted back to
the ground controller and UAVs can cooperatively complete the task. This constraint is referred
to as connectivity constraint. In other words, the inter-UAV distance should be within the UAVs’
transmission range, denoted byw . We use xi, j,t to denote whether the distance between ui and uj

(i � j) is less than w at time t , that is,

xi, j,t =

{
1, if d (ui,t ,uj,t ) ≤ w
0, if d (ui,t ,uj,t ) > w

. (2)

Then the connectivity constraint can be formulated by the following inequality:∑
j :uj ∈U , j�i

d (ui,t ,uj,t ) · xi, j,t > 0, ∀ui ∈ U , ∀t ∈ [0,T ). (3)

Each target point must be scanned by at least one UAV, referred to be the coverage constraint.
We use yi, j,t to represent whether target point pi is scanned by uj at time t , that is,

yi, j,t =

{
1, if uj,t = pi

0, otherwise
. (4)

Then the coverage constraint can be denoted by∑
j :uj ∈U

∑
t :t ∈[0,T )

yi, j,t ≥ 1, ∀pi ∈ P . (5)
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For UAVs that are not rechargeable during the flight, it is critical to complete the journey as soon
as possible. However, considering limited battery supply on UAVs, it is also critical to minimize
the longest route among the UAVs. Thus, we define our objective as

Lf leet = max
uj ∈U

Lj , (6)

where Lj is the total moving distance of uj , which can be calculated as Lj =
∑T−1

t=0 d (uj,t ,uj,t+1).
We formally define the multi-UAV target-point visiting problem as follows:

Definition 1. Given a fixed number of UAVs and a set of target points distributed in an area,
the multi-UAV target-point visiting problem is to plan the trajectory that each drone should move
along at each time, to minimize the longest route,

min max
uj ∈U

Lj

subject to Equations (1) (3) (5).

3.2 Polygon-guided Scanning Algorithm

In this section, we propose a UAV fleet planning algorithm, called Polygon-guided Scanning Algo-

rithm (PSA), to cooperatively visit the target points as soon as possible. We note that no matter
what kind of planning method is applied, the set of points that constitutes the convex hull of all
the target points should be scanned. Thus, our high-level idea is to let the UAV fleet move along
the convex hull of the target points and cover the maximum possible range under communica-
tion connectivity constraint. Since there may exist target points that cannot be covered in the first
round of scanning, the fleet will iteratively scan the remaining target points round-by-round. Such
a scanning process would partition the area into sub-areas through iterations. Observing that the
optimal solution needs to incur a travel distance that is at least the perimeter of the convex poly-
gon, we will design a partition method that ensures the scanned area in each iteration/round is
the maximum possible area, making the travel distance of the fleet approach that of the optimal
solution. In what follows, we will first introduce the partition of the area and the overall scanning
scheme for the UAV fleet, then we will introduce the detailed scheme for a round of scanning.
Finally, we will give the performance analysis of the proposed algorithm.

3.2.1 Overall Scanning Scheme. Given all the current non-scanned target points, we can com-
pute the corresponding convex hull, the minimum convex set that contains all the target points
to be scanned. Let Vk = {vk,1,vk,2, . . . ,vk,hk

} be the computed convex hull in the kth round of
scanning, where hk is the number of vertices of the convex hull. The convex hull Vk is called the
outer boundary. We make UAV fleet move along the outer boundary and cover the maximum pos-
sible range under the communication connectivity constraint (keep the formation to be evenly
spaced on a line with a length wmax = (m − 1) ×w). This would generate a ring-like area, de-
noted by Rk , as illustrated in Figure 7(a), which is exactly the area of the kth round of scanning.
LetV ′

k
= {v ′

k,1
,v ′

k,2
, . . . ,v ′

k,hk
} be the points constituting the inner boundary of the ring Rk . Obvi-

ously, the inner bounder is parallel to and lies inside the outer boundary. Let Pk be the set of target
points inside the area Rk (e.g., for k = 1, P1 = P ∩ R1). The specific scanning scheme for target
points Pk will be described in detail later.

After scanning the set Pk , the remaining target points P \⋃k
i=1 Pi all locate inside the inner

boundary of Rk . We continue the scanning by treating P \⋃k
i=1 Pi as new given target points and

computing the convex hull of these points again to determine the scanning area Rk+1 in the next
round of scanning. We repeat this operation until all the target points are scanned. Let the total
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Fig. 7. An example of area partition and transfer of UAV fleet.

number of rounds be K . Then, we have P =
⋃K

k=1 Pk . Figure 7(a) shows a schematic diagram when
K = 3. The detailed description of the overall scanning scheme is shown in Algorithm 1.

3.2.2 Transfer Scheme of Two Adjacent Rounds. Now, we introduce the transfer scheme on how
the UAV fleet will travel from a scanned area Rk to the next area Rk+1 to be scanned in the next
round, as shown in Figure 7(b). In our scheme, the UAV fleet will travel from Rk to Rk+1 along a
line as follows: During the process that all the drones move from the outermost scanning area R1

to the innermost one RK , the shortest distance between the outer boundary of R1 and the outer
boundary of RK is treated as the shortest transfer distance. It is not difficult to see that this value is
the shortest distance from the points inVK to the outer boundary of R1. Let the intersection points
between the line with the shortest transfer distance and the outer boundary of Rk ,k = 1, 2, . . . ,K
beC = {c1, c2, . . . , cK }. Figure 7(b) illustrates a segment of c1cK that achieves the shortest transfer
distance, which is denoted as Ltr ans . In the kth round of scanning, the fleet starts the flight from
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ck . After scanning the area Rk , the fleet returns to ck . Then, it moves along ckck+1 to ck+1 and starts
the next round of scanning.

Remark 1. Although the fleet needs to adjust the formation when all the drones enter the next
scanning area, considering the length of the flight along the outside of a scanning area is usually
much longer than that along the inside, the moving distance caused by this adjustment can be
ignored, which implies that under our planning the longest route of the UAV fleet is determined
by the drone that moves along the outer boundary of each area Ri , i = 1, 2, . . . ,K .

ALGORITHM 1: Polygon-guided Scanning Algorithm (a.k.a. PSA)

input: the set of target points P , the set of drones U , maximum communication distance w
output: the flight planning and the corresponding flight cost of the UAV fleet Lf leet

1 Let the largest scanning width be wmax ← (m − 1) ×w , let k ← 1, let Lf leet ← 0;

2 while P is not empty do

3 Compute the set of points Vk that constitute the convex hull of P (e.g., by adopting the

method of Graham scanning);

4 Compute the set of points V
′

k
that constitute the inner boundary of the area of the

current round of scanning, based on Vk and wmax ;

5 Get the sub-area Rk and target points Pk in round k based on Vk , V
′

k
, and P ;

6 Call Algorithm to scan sub-area Rk and get the corresponding flight cost Lk ;

7 Lf leet ← Lf leet + Lk ;

8 P ← P \ Pk ;

9 k ← k + 1;

10 end

11 Compute the transfer distance Ltr ans ;

12 Lf leet = Lf leet + Ltr ans ;

13 return Lf leet ;

3.2.3 The Planning for a Single Round of Scanning. Now, we introduce the detailed planning for
scanning target points in a single round, the specific ring-like area Rk .

As mentioned before, during the process of scanning target points, we will keep all the drones
on a line. We call these lines formed by the UAV fleet the scanning lines. We will make the scanning
lines perpendicular to the parallel lines of the outer and inner boundary of area Rk at any time. The
scanning process then can be viewed as the traversal of the scanning lines. Figure 8(a) illustrates
the scanning lines (dashed lines) during the scanning. In general, UAVs in the fleet formation will
travel in parallel along the outer boundary, except the case that some target points are covered by
the scanning line of the fleet during the flight. In that case, the drones should adjust and travel
along the scanning line to cover the target points that fall on that line. Besides, in our planning,
the distance between any two adjacent drones remains unchanged all the time, except for the case
when they meet a vertex of the scanning area where the drones need to adjust their directions.

We first determine the flight cost caused by traversing between the scanning lines. Assume that
the perimeter of the outer boundary (convex polygon) in area Rk is Lk . As shown in Figure 8(a),
during the traversing between the scanning lines in the area Rk , the outermost drone u1 travels
along the convex polygon and contributes the maximum flight distance. Thus, the flight cost of
the fleet caused by traversing between the scanning lines is Lk .
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Fig. 8. (a) The scheme for single round of scanning; (b) Adjustment in the corner region.

Then, we determine the flight cost to adjust the fleet and travel along the scanning line for vis-
iting target points lying on a single scanning line. Since target points must be passed by scanning
line, we can divide the set of target points Pk in Rk into a number of subsets. Denoted by Fs the
sth subset that contains target points lying on the same scanning line. Figure 8(a) illustrates a set
Fs with two target points that lie on the same scanning line. Assume that there are S such subsets.
Then, Pk =

⋃S
s=1 Fs where Fi ∩ Fj = ∅(i � j ).

ALGORITHM 2: Polygon-guided Scanning Single-Turn Algorithm (PSTA)

input: the set of drones U , the scanning area Rk , the set of target points Pk , maximum
communication distance w

output: the flight planning and corresponding flight cost of the UAV fleet Lk for the kth
round of scanning

1 Compute the subset of points Fs (s = 1, 2, . . . , S ) where each subset includes all the target

points lying on the same perpendicular line of the two boundaries;

2 Compute the length L(bk ) of the outer boundary of Rk ;

3 Let Lk ← L(bk );

4 for s = 1 to S do

5 Let the UAV fleet move to the scanning line that passes through Fs ;

6 Let the fleet fly towards the inner boundary along the scanning line, until all the target

points in Fs are scanned, and then return back;

7 Let the flight cost caused by travelling along the scanning line be L(Fs );

8 Lk ← Lk + 2 · L(Fs );

9 end

10 return Lk ;

To obey the connectivity constraints of all the drones, the whole fleet will make a minor adjust-
ment and fly towards the inner boundary of Rk simultaneously to reach the target points covered
by the current scanning line. If there are multiple target points on the scanning line, the flight cost
will be determined by the minimum moving distance to scan all the target points, which can be
easily measured. Let L(Fs ) be such a cost generated on a scanning line Fs . When all the target points
on the current scanning line have been scanned, the fleet will return to their starting points on this
scanning line and move on to the next scanning line, as demonstrated by the red lines in Figure 8(a).
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Therefore, the flight cost of the adjustment would be 2 · L(Fs ). We use Lad just =
∑

Fs ⊆P 2L(Fs ) to
denote the total travel distance generated by the minor adjustments during the whole flight.

Note that after finishing scanning along an edge of the outer boundary, we need to further
adjust the fleet formation and make it scan in parallel along the next edge of the outer boundary,
as illustrated in Figure 8(b). Such an adjustment would not increase the flight cost of the fleet, since
the outermost UAV still travels with the longest distance along the outer boundary.

Algorithm 2 presents the details of the scanning process for a specific sub-area. Line 1 constructs
the subsets Fs . Line 2 computes the total flight cost when the fleet traverses between scanning lines.
Lines 4–9 guide the fleet to scan the target points Fs falling on a scanning line and computes the
corresponding flight cost.

3.2.4 Theoretical Analysis. We further theoretically analyze the worst-case performance of the
algorithm. Intuitively, according to the partition scheme of PSA, the convex polygon generated
in each round of PSA is the minimum convex set containing the remaining non-visited target
points, thus the optimal solution needs to travel with a distance equaling the perimeter of the
convex polygon in each round. This allows us to bound the difference of UAV fleet travel distance
between PSA and the optimal solution. Let L(PSA) and L(OPT ) be the UAV fleet travel distance
incurred by algorithm PSA and the optimal solution, respectively. Note that during the travel along
convex polygons, or more exactly traversing between scanning lines, the UAV fleet needs to adjust
and move along the scanning line to cover the target points on the scanning line. In the following
theorem, we show that the extra travel distance generated by PSA compared to the optimal solution
is upper bounded by Lad just , which is usually a short moving distance caused by minor adjustment
when traversing along the convex polygons.

Theorem 1. The gap of the flight distance between PSA and the optimum solution satisfies

L (PSA) − L (OPT ) ≤ Lad just .

Proof. There are three constraints in the target-point visiting problem. The coverage constraint
requires us to scan all the target points in target points set P , which indicates that we must scan
the vertices on the convex hull of target points. However, connectivity constraint requires the
connectivity of drones in real time, hence the largest scanning width of drones iswmax . According
to the partition scheme of PSA, each sub-area Rk is the maximum region that the UAV fleet can
scan along the convex polygon. Therefore, in the optimum solution, the distance the UAV fleet
needs to travel within each sub-area Rk is at least Lk . Moreover, as Ltr ans is the shortest distance
from the outermost boundary to the innermost boundary, the optimal solution should also incur
another travel distance Ltr ans to move the fleet from the outermost area to the innermost area.
Hence, we can get the lower bound of the optimum solution that L (OPT ) ≥ Ltr ans +

∑K
k=1 Lk .

Note that the travel distance of the UAV fleet generated by algorithm PSA contains three parts:
the distance Lk incurred by travelling along the convex polygon (which is the distance the outer-
most UAV travels with), the distance Ltr ans incurred by moving along the transfer line, and the
distance 2L(Fs ) incurred by covering the target points on a scanning line Fs . Accordingly, the total
travel distance of PSA is

∑K
k=1 Lk + Ltr ans + Lad just where Lad just =

∑
Fs ⊆P 2L(Fs ). Therefore, the

extra travel distance generated by PSA compared to the optimal solution is at most Lad just . �

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we conduct field tests and simulations to demonstrate the effectiveness of our
CoUAS platform in simulating UAVs cooperation and real-world flights. We will perform the tasks
in both the simulator environment and the field tests, demonstrating that our simulator can be
used as a reliable platform for testing.
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Fig. 9. Trajectories of three UAVs in field test (left) and simulation environment (right) when completing a

task with 30 points.

4.0.5 Comparison between the Trajectories Generated in the Simulator and Field Test for a Sin-

gle Task. We first set a target-point visiting task that consists of 30 target points and three UAVs
as a fleet. The length and width of the field are set to be 120 m. All target points are randomly
generated in this area. By default, the tasks are performed at the speed of 4 m/s. With the pro-
vided synchronization mechanism, when a UAV moves to a point at which it needs to change its
direction, it would check the distance to others and wait for others if necessary to preserve global
connectivity. We first run the task in our simulator to generate trajectories and predict the energy
consumption based on the prediction model trained for UAVs. Then, we use the following two
types of UAVs to conduct field tests: copters with frame QUAD or HEXA controlled by Pixhawk
and copters with frame QUAD controlled by APM. The flight distance is calculated according to the
real-time coordinates from GPS. The time of flight is calculated according to the system clock of
Raspberry Pi 3b on UAV. The energy consumption is measured by computing the real-time voltage
and current of battery read from the power module.

Figure 9 shows the trajectories generated in our CoUAS simulator (left one) and the field test
(right one). From the figure, we can see that the trajectories generated in the simulator are similar
to those in the field tests. The trajectory between two inflection points is more irregular in field test,
which is caused by the unstable environment conditions in reality. Despite this, after examining
log data from the connectivity management and synchronization modules of CoUAS, we find that
the fleet manages to maintain the connectivity and visits all target points while satisfying the
battery capacity.

4.0.6 Comparison of Flying Distance and Energy Consumption between Simulation and Field Test

for a Single Task. For the same task, we recorded the flying distance and energy consumption
during the whole flight in both simulation and the field test. Figure 10 shows the flying distance
and energy consumption on one of the three UAVs, which is a copter with frame HEXA controlled
by Pixhawk. We can see from the figure that during the whole flight, at any given time, the flying
distance and consumed energy in simulation and field test are consistently close.
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Fig. 10. Flying distance and energy consumption in simulation and field test for a single task.

Fig. 11. The impact of the number of target points on the flight distance and flying time.

4.0.7 Comparison of Flying Distance, Flying Time, Energy Consumption in Simulation and Field

Test over Multiple Tasks. We generate several different tasks by changing the number of target
points from 5 to 30. For each task, we generate a path plan and conduct simulation and field test
accordingly. The flying distance and energy consumption are recorded in each task.

As we can see from Figure 11, the flying distance and energy consumption in the simulation is
very close to that in the field tests for multiple tasks. In terms of the energy consumption, the gap
between the field test and simulator is about 5.74% on average. These together validate that the
simulator can reliably reflect the real flight.

5 RELATED WORK

This article mainly focuses on developing an easy-to-use unified framework to facilitate the design,
deployment, and testing of multi-UAV applications. In this section, we mainly review relevant
multiple UAV cooperation testbeds and the existing work in path planning.

Over the years, some research efforts have been made on designing testbeds [2, 5, 10, 19] for mul-
tiple UAVs. Such testbeds for UAVs are mainly focusing on the control of fixed-wing UAVs, which
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cannot be easily extended to that of multi-rotor UAVs. In recent years, multi-rotor consumer UAVs
have become more and more popular. Multi-rotor UAV testbeds emerge quite recently. For exam-
ple, the Group Autonomy for Mobile Systems (GAMS) project [8] aims at providing a distributed
operating environment for accurate control of one or more UAVs. The OpenUAV project [26] pro-
vides a cloud-enabled testbed including standardized UAV hardware and an end-to-end simulation
stack. Itkin et al. [11] propose a cloud-based web application that provides real-time flight mon-
itoring and management for quad-rotor UAVs to detect and prevent potential collisions. Gazebo
[13] and AirSim [23] aim at providing 3D simulation environment that contains realistic scenarios
to support research such as aerial 3D reconstruction and object tracking. However, few works pro-
vide a generic platform that aims at simplifying the design of multi-UAV cooperative applications
and their development. What is more, few works have exploited the connection characteristics
among multiple UAVs.

In the past few years, a number of research works [1, 12, 17, 24] have studied the path plan-
ning problem with the coverage constraint. However, they have not considered the connectivity
requirement of multiple UAVs during the flight. Only a few works have addressed the same con-
nectivity requirement of UAV fleet during flight as considered in this article. Yanmaz et al.[27] and
Schleich et al. [22] develop and design distributed heuristic path planning algorithms to cover a
given area and maintain the connectivity of UAVs. However, they fail to guarantee either the full
coverage of the area or hard-constraint of connectivity. Most recently, Tateo et al. [25] and Char-
rier et al. [3] study the problem of multi-agent connected path finding to visit a given set of points
for cooperative connected agents. However, the problem is established on a finite graph with a
discretized environment, while real-world environment is continuous and, moreover, the online
synchronization as well as adjustment among UAVs during the flight is not considered.

In summary, to the best knowledge of the authors, there is a lack of viable solutions that can
provide a generic framework/testbed to support cooperative UAV fleet control/monitoring with
connectivity and facilitate the deployment of multi-UAV applications.

6 CONCLUSION

In this article, we develop an open-source system named CoUAS that enables the cooperation of
multiple UAVs in a fleet. The proposed system provides generic interface that hides the hardware
difference of UAVs to facilitate the cooperative UAV development and also offers a series of coop-
eration services such as synchronization and connectivity management, energy simulation, and
cooperative path planning to enable upper-layer user application designs. We further detail the
main algorithm of path planning service provided in our CoUAS platform and evaluate the system
performance with simulations and field tests to validate that the proposed system is viable. A demo
and source code are published in https://github.com/whxru/CoUAS for open access.
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