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Abstract—Uncrewed aerial vehicles (UAVs) are being widely
employed in wireless communication applications, e.g., collecting
data from ground nodes (GNs). Minimizing UAV energy in these
applications is crucial due to the limited energy supply onboard.
Unlike previous studies that assume UAVs fly at a fixed altitude
and simplify the energy consumption model of UAVs, we consider
the impact of varying UAV altitudes on the ground-to-air com-
munication and utilize a general communication model for GN.
Furthermore, we conduct real-world flight tests and introduce a
practical speed-related flight energy consumption model of UAVs.
This paper focuses on the UAV altitude-speed scheduling and GN
transmission switching (UASS-GTS) problem, specifically in sce-
narios where the UAV flies straight for monitoring applications
such as power transmission lines, roads, and water/oil/gas pipes.
However, minimizing energy consumption presents challenges due
to the tight coupling of altitude scheduling and speed schedul-
ing. To tackle this, first, we develop the looking before crossing
algorithm for speed scheduling. We then extend this algorithm
by integrating altitude scheduling to propose the Altitude-Speed
Scheduling of UAV for Minimizing Energy (ASSUME) algorithm,
using a dynamic programming method. The ASSUME algorithm
is theoretically proven to be optimal. Additionally, based on AS-
SUME, we propose an offline-inspired online heuristic algorithm
to handle agnostic situations where GN information is not available
unless flies close. Simulations indicate that the ASSUME algorithm
saves an average of 26.1%–62.7% energy compared to the baseline
methods, and the performance gap between the online algorithm
and the offline optimal algorithm ASSUME is 22.8%.

Index Terms—Uncrewed aerial vehicle, energy efficiency, speed
scheduling, altitude scheduling, flight energy minimization.

I. INTRODUCTION

UNCREWED aerial vehicles (UAVs) are being widely em-
ployed in wireless communication applications [1], [2],

[3], [4], [5], [6], including wireless base stations [1], wireless
relays [2], and in edge computing [3] and data collection [4],
[6]. Wireless sensors and Internet of Things (IoT) devices are
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extensively deployed for a wide range of monitoring purposes.
Data collection from such ground nodes (GNs) using UAVs is
one of the most important applications, as UAVs can fly close to
establish line-of-sight(LoS) energy-efficient data communica-
tions. Considerable research efforts have already been dedicated
to this area [4], [6], [7], [8], [9], [10], [11], [12].

The energy consumption of UAVs is a critical issue due to the
limited energy supply available on board, as a result, minimizing
UAV energy is of great importance. Generally speaking, a UAV
employed in data collection applications involves both horizon-
tal and vertical flight, which indicates the energy consumption
consist of two components: the energy required to change flight
altitude and the energy needed to cover distance. However,
most existing work consider the simplified models: 1) assuming
that UAVs fly at a fixed altitude [6], [13], which overlooks the
effects of varying altitudes on the performance of ground-to-air
communication, and thus loses the optimization potential, and
2) utilizing either a distance-related UAV energy model [7],
[14], [15], where the energy consumption is proportional to the
distance that the UAV covers, or a duration-related UAV energy
mode [5], [9], [16], [17], [18], [19], [20], where the energy con-
sumption is proportional to the duration of flight. Both models
fail to accurately reflect the actual energy consumption, limiting
their applicability for in-depth investigations.

Distinct from the previous work, first, this paper considers
how varying altitudes of UAV leads to different efficiency of
communication during data collection. Inspired by the work
in [21], we adopt a more general communication model for
GN as illustrated in Fig. 1(b). The range of ground-to-air
communication varies following the flight altitude of the UAV.
Although a higher altitude increases the probability of LoS, it
may simultaneously reduce the communication coverage area
of the UAV, which influences the level of energy minimization
achieved. This observation motivates us to delicately schedule
the UAV flight altitude for energy optimization. Furthermore,
we conduct a set of real-world flight tests using a multi-rotor
UAV, and a practical speed-related energy consumption model
is disclosed as displayed in Fig. 1(a). In this model, we observe
that the UAV has the lowest power consumption at a specific
speed (v∗, as depicted in the figure), while consuming more
power at both higher and lower speeds. Further details regarding
this model will be discussed in the following section. Such
a model has been verified by a theoretical analysis work on
the energy model of rotary-wing UAVs [22]. As a result, we
conclude that our speed-related energy model is more practical
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Fig. 1. The application scenarios are illustrated in (c), where a UAV is
dispatched to collect data from a set of wireless sensors or IoT devices (GNs)
deployed along a straight line, such as a power transmission line, a road, a
water/oil/gas pipe or a river/coast. Note that we consider a practical speed-related
energy model of UAV, as depicted in (a), and more general communication model
of GN, as depicted in (b).

than most existing energy consumption models used for wireless
communication. Based on this promising speed-related energy
model, we identify an opportunity to optimize energy power
through speed scheduling.

In this paper, our focus lies on the energy-efficient UAV
altitude-speed scheduling and GN transmission switching
(UASS-GTS) problem. Specifically, we consider scenarios
where GNs are deployed along a straight line to serve various ap-
plications, including monitoring power transmission lines [23],
roads [24], water/oil/gas pipes [25] or rivers/coasts [26]. Fig. 1(c)
is presented as an illustration of the application scenarios. Note
that we consider only the flight energy consumption and do
not take into account energy consumption for wireless data
transmission. This is because, according to our real-world flight
tests, the power for UAVs to hover is around 400W , while a
typical LoRa/Wi-Fi wireless communication module’s power
consumption is 100 mW [27]/300 mW [28], which implies that
the energy consumption for wireless transmission is negligibly
small in comparison to the energy consumed during flight,
allowing us to focus on tracing the fundamental nature of altitude
and speed scheduling.

Despite incorporating both the practical communication
model of GN and the speed-related energy model of UAV, the
fundamental nature of altitude and speed scheduling remains
evident in the following challenges posed to our problem.

1) Minimizing the energy consumption is challenging due to
the tight coupling between UAV altitude scheduling and
speed scheduling. On one hand, optimizing speed schedul-
ing may frequently adjust altitude in order to achieve an
optimum transmission range for GN [21], which in turn
increases energy consumption of changing altitude [8]. On
the other hand, optimizing altitude scheduling requires
minimizing altitude adjustments or maintaining a fixed
altitude, which may result in a suboptimal transmission
range, thereby posing a disadvantage for UAV speed
scheduling.

2) Optimizing data collection with minimum energy costs
during UAV speed scheduling presents a further challenge.

On one hand, flying at a slower speed allows the UAV
sufficient time to collect all data. However, this slower
speed consumes more energy, as indicated by our practical
energy model. On the other hand, a faster speed flight may
reduce the flight energy consumption, but risks incomplete
data collection due to insufficient time within the transmis-
sion range.

3) The competition among these heterogeneous GNs com-
plicates the data collection scenarios. The communication
ranges of GNs overlap, and the UAV can only collect data
from one GN at a time. As a result, each GN competes
for UAV’s duration to transmit its data. Moreover, the
varying amounts of data to be transmitted and the different
communication models of GNs add to the challenge of
balancing this competition.

As the challenges stated above, it is hard to find a straightfor-
ward solution to the UASS-GTS problem. Despite the existence
of high-quality work on energy-efficient data collection, none of
them can be applied directly to address this problem. The most
relevant work on speed scheduling is by Zeng et al. [22], but their
formalized problem is difficult to solve because both the speed
scheduling and the UAV flight trajectory need to be determined.
As a result, they obtain a heuristic solution with uncertain devia-
tions from the optimal solution. In this paper, first, we develop an
algorithm named looking before crossing to tackle a basic case
of the UASS-GTS problem, specifically focusing on scheduling
the UAV’s speed. Within this algorithm, we construct virtual
rooms on a time-distance diagram to represent the spatiotempo-
ral constraints of GNs in transmission ranges and transmission
time. A trajectory crossing these virtual rooms can be uniquely
mapped to a solution. By extending this basic solution, we
propose the Altitude-Speed Scheduling of UAV for Minimizing
Energy (ASSUME) algorithm to solve the general UASS-GTS
problem, integrating joint altitude scheduling through a dynamic
programming method. This approach is theoretically proven to
be optimal. Additionally, based on ASSUME, we propose an
offline-inspired online heuristic algorithm to handle agnostic
situations where GN information is not available unless flies
close. The contributions of this paper are summarized as follows.
� We derive a practical speed-related energy consumption

model from our real-world flight tests. We find that there
exists an optimal speed at which the power consumption of
UAV is minimized, with higher and lower speeds resulting
in increased power consumption. This model is distinct
from most existing studies that typically assume either the
distance-related or duration-related energy model.

� We formulate a novel energy minimization problem in
UAV-aided data collection scenarios, named the UAV
altitude-speed scheduling and GN transmission switching
(UASS-GTS) problem. This problem is the first to incor-
porate the two practical models: the communication model
of GN and the speed-related energy model of UAV.

� We develop the looking before crossing algorithm to solve
a basic case, focusing on UAV speed scheduling. Sub-
sequently, we extend this basic solution to propose the
ASSUME algorithm for the general UASS-GTS problem,
integrating joint altitude scheduling through a dynamic
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TABLE I
COMPARATIVE ANALYSIS OF RELATED WORK AND OUR APPROACH

programming method. Additionally, we present an offline-
inspired online heuristic algorithm to address the online
problem where GN information is unavailable until the
UAV flies close.

� We conduct extensive simulations to evaluate the perfor-
mance of the proposed algorithms. The results show that the
ASSUME algorithm can save an average of 26.1%–62.7%
energy compared to the baseline methods, and the perfor-
mance gap between the online algorithm and the ASSUME
is 22.8%.

The rest of this paper is organized as follows. Section II
investigates the related work. Section III presents the system
model and formulates the problem. The basic case of this prob-
lem and its solution are detailed in Section IV. Following this,
the ASSUME algorithm and its online algorithm are introduced
in Sections V and VI, respectively. Extensive simulations are
conducted in Section VII. Finally, Section VIII concludes the
paper.

II. RELATED WORK

In this section, we examine closely related works concerning
energy-efficient algorithms for UAV-aided data collection, UAV
altitude optimization, and UAV flight energy model. To sum-
marize these existing studies, we present a comparative table in
Table I.

A. Energy-Efficient Algorithms for UAV-Aided Data Collection

Energy consumption is a critical issue in UAV-aided data
collection applications, thus many researchers have focused
on the energy-efficient algorithms. (1) A classical approach to
optimizing energy consumption is mathematical programming.
In these studies [2], [3], [4], [29], researchers typically start
by theoretically formulating an optimization problem that is
mathematically tractable and then employ optimization theo-
ries such as the successive convex approximation technique
or quadratic optimization to find feasible solutions. However,
mathematical programming often involves complex models and
formulations. (2) Therefore, some researches [9], [30], [32],
[37], [46], [47] propose energy-efficient algorithms based on
heuristic. For example, Jia et al. [47] introduce a multi-strategy
multi-objective optimization algorithm to solve the problem of
minimizing the maximum task completion time and the maxi-
mum energy consumption among all UAVs. In [46] and [32], the
authors design Ant Colony Optimization (ACO) based frame-
work to solve the energy cost and completion time minimization

problems in UAV-Assisted task offloading systems, satisfying
the energy, deadline, location, and priority constraints. While
these hybrid intelligent algorithms provide efficient solutions,
their performance is not guaranteed to be optimal theoretically.
(3) More recently, the emergence of policy optimization and
learning-based techniques has greatly facilitated energy opti-
mization [10], [33], [34], [35]. Zhu et al. [10], combining UAVs
with LoRa in large-scale data collection, formulate a joint of
energy consumption and data acquisition efficiency optimization
problem, then a Deep Reinforcement Learning (DRL) based
two-stage scheme is proposed to explore the optimal trajec-
tory based on an attention-based encoder-decoder model to
generate an initial trajectory. Mondal et al. [33] consider the
energy-efficiency optimization of data collection system, which
is reduced into an MDP model, then a Deep Deterministic Policy
Gradient (DDPG) algorithm is used to learn the UAV’s trajec-
tory. Similarly, Ning et al. [34] construct an MDP model and
proposed a Multi-agent Constrained DRL algorithm to learn the
optimal UAV movement policy in data acquisition and trajectory
planning. Although these learning-based methods performance
is promising, most of them cannot guarantee global optimality,
and their decision-making process lacks interpretability. More
importantly, they require substantial computational resources
and data for training and inference in unseen scenarios, which
may introduce latency in online deployment.

In contrast to these previous techniques, in this paper, we pro-
pose an optimal algorithm for energy minimization by skillfully
constructing spatial-temporal virtual rooms and flight altitude
scheduling. Our algorithm not only theoretically guarantees
global optimality but also features good generalization ability,
low computational complexity, high interpretability, and real-
time performance, without relying on complex models, intensive
computational resources, or massive training data.

B. UAV Altitude Optimization

In this subsection, we investigate researches on UAV flight
altitude scheduling. Some existing work assume that UAVs fly at
a fixed altitude to carry out tasks [6], [13], [35], [36], which sim-
plifies the analysis but limits practical applicability. Therefore,
considering the impact of flight altitude on the communication
coverage range and energy efficiency, many recent studies utilize
a more practical channel communication model between UAV
and GN with dynamic altitude adjustment. Confirmed by the cell
radius model derived in [21], an optimum altitude of UAV can
be found to optimize UAV placement issues [5], [39], [40], [41],
[42], [43], [44], [45]. In the context of disaster localization, the
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authors [40], [41] study the impact of UAV altitude on localiza-
tion error. Albanese et al. [41] present a drone-based search and
rescue solution where an optimal altitude of UAV is obtained as
a trade-off between the antenna radiation pattern effect at low
altitudes and the stronger path loss at high altitudes. Similarly,
Ebrahimi et al. [40] suggest that higher altitude increases the
probability of LoS and thus better localization accuracy but
decreases the coverage area of the UAV, leading to fewer objects
being localized. In a multi-antenna UAV-aided NOMA multi-
user pairing system, Hoang et al. [43] also propose an algorithm
to determine the optimum altitude of UAV that maximizes the
throughput of system, given the number of transmission bits.
To provide better coverage for high-density distribution of flash
crowds, Lai et al. [42] exploit multiple UAVs placed at different
altitudes, and propose data-driven 3D placement algorithms to
effectively find the appropriate altitude, as well as the number
and location of UAVs, to maximize the system sum rate. In data
collection applications, Ko et al. [5] utilize the Newton iteration
method and an aggressive method, respectively, to compute the
optimum flight altitude of UAVs, tailored to varying mission
requirements.

The aforementioned studies dynamically adjust UAV altitude
to achieve better optimization. Hence, building on the communi-
cation model introduced in [21], our problem also incorporates
UAV flight altitude scheduling into the energy optimization
problem.

C. UAV Flight Energy Model

Generally speaking, the UAV flight energy model has a sig-
nificant impact on the effectiveness of the UAV energy con-
sumption algorithm. Currently, UAV flight energy models can
be broadly classified into three categories: (1) Distance-related
model [7], [15], [48]. Piao et al. [7] investigate an indoor
CSI measurement problem using a UAV, and the UAV energy
cost depends on the distance covered and the number of turns
made. Additionally, Xiang et al. [15] implement a UAV delivery
sensing prototype system to develop an energy consumption
model that considers both the flight distance and the capacity
of UAVs. (2) Duration-related model [5], [9], [19], [20]. Zhu
et al. [19] adopt the duration-related energy model to minimize
the energy consumption during data collection in large-scale
wireless sensor networks. Zhang et al. [20] assume a constant
cruising speed in a UAV-assisted IoT network and calculate en-
ergy consumption based on the accumulated duration time. In the
context of large-scale IoT systems, Ma et al. [9] also leverage the
duration-relate model to devise a novel data collection scheme
that can balance energy minimization and data rate maximiza-
tion. Ko et al. [5] design UAV trajectories for location-dependent
visual coverage and estimate total energy consumption based
on the basic UAV power consumption multiplied by the flying
time. (3) Speed-related model [22], [31], [38], [49], [50]. Some
researches indicate that both models introduced above simplify
UAV energy consumption model, with the speed-related model
being more practical. Morbidi et al. [49] obtain a speed-related
model by leveraging the electrical model of a brushless direct
current motor to design energy-efficient paths for UAVs. Ding

Fig. 2. A practical speed-related energy consumption model. The power
consumption is related to the UAV speed via a convex function, e.g., it initially
decreases and then increases as the speed increases.

et al. [50] focus on the UAV three-dimensional flight and also
formulate a speed-related mathematical model for the propulsion
energy consumption.

However, these speed-related models only partly characterize
the UAV flight energy and lack practicality, or they combine
speed control with trajectory design for UAVs, complicating
to solution and losing focus on the fundamental nature of speed
scheduling. In this paper, we thus remodel the UAV energy power
consumption through real-world experiments, and the results
also be verified as sound according to the work in [22]. We will
detail the experiments in the next section.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Practical Flight Energy Consumption Model

As mentioned above, traditional flight energy models have
certain limitations. Therefore, we conduct a set of on-site flight
tests to disclose the relationship between flight speed and power
consumption. For these flight tests, we use a 2 kgs hexacopter
drone, following a similar setup as the flight tests conducted
in [51]. Specifically, this hexacopter drone is equipped with a
flight controller Pixhawk 3.6.5 which is connected to a compan-
ion computing device, Raspberry Pi 3b single-board computer
(RPi). The Pixhawk controller continuously transmitted UAV
battery voltage information to the RPi using the MAVLink pro-
tocol. To monitor real-time UAV battery current values, we also
install a current module ACS712. The RPi retrieve these current
values through I 2 C communication protocol. By collecting both
the voltage and current values, we can compute the UAV power
consumption.

During these flight tests, we instruct the UAV to fly along a
straight line, not exceeding a distance of 1000 m, and vary the
speed from 0 m/s (hover) to 18 m/s with an increment of 3 m/s.
Each speed setting is repeated ten times, and the mean value is
calculated to mitigate anomalies arising from individual trials.
Fig. 2 illustrates a UAV during one of our flight tests.

The experiment results provide a comprehensive understand-
ing of the correlation between flight speed and power consump-
tion of the UAV. As demonstrated in Fig. 2, the results clearly
show that neither the distance-related energy model nor the
duration-related energy model holds. The flight power exhibits
a convex relationship with the flight speed, more specifically,
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the flight power of UAV first decreases and then increases as
flight speed increases. Our findings align with the measurement
results of pioneer researchers [52], and this model has been
verified through theoretical analysis [22]. In conclusion, the
speed-related energy consumption model is more practical and
applicable compared to other existing models used for wireless
communication.

B. System Model

We assume that there are n heterogeneous GNs, e.g., wireless
sensors and IoT devices, distributed unevenly along a straight
path. Such linear GN distributions are prevalent in real-world
scenarios, including power transmission lines, roads, oil/gas
pipelines, and riverbanks/coastlines, simplifying the installation
and maintenance of GNs while providing efficient coverage to
reduce communication interference for elongated areas. These
GNs are deployed to carry out monitoring tasks and sensing
data, and they are indexed based on their locations, labeled as
g1, g2, . . . , gn. Each GN gi has a location li that is determined
during infrastructure deployment and regularly maintained. To
collect sensed data from these GNs, a UAV is employed to fly
along the path. The UAV is allowed to fly slowly or quickly, and
to ascend or descend, but it can never fly backward. It is noted
that the UAV is allowed to fly slowly or quickly, and to ascend
or descend, but it can never fly backward.

In such data collection scenarios, the ground-to-air radio sig-
nals emitted by GNs propagate through free space, introducing
inevitable loss in the communication link, known as path loss.
We define the maximum allowable path loss PLmax

i for gi. If
the path loss between the UAV and gi exceeds its threshold
PLmax

i , the link is considered to have failed, in other words, the
data transmission process is terminated. Inspired by the work
in [21], we adopt a mathematical communication model for each
gi constrained with the following definition:

PLmax
i =

μLoS − μNLoS

1 + a exp(−b[arctan( rihi
)− a])

+ 10 log(h2
i + r2i ) +M, (1)

whereμLoS andμNLoS are the mean values of the excessive path
losses in LoS and non-line-of-sight (NLoS) links, respectively,
M = 20 log f + 20 log(4π/c) + μNLoS , a and b are environ-
ment parameters, and ri and hi are horizontal distance and
vertical distance between the UAV and gi, respectively. We as-
sume that such communication parameters are calibrated during
system setup and periodically verified to ensure the accuracy
of the communication model. This communication model is
depicted in Fig. 1(b). Assuming that the UAV flies at a certain
altitude,h′

i, and since the path loss between the UAV and gi must
be less than or equal toPLmax

i , the transmission range is limited
to a coverage disk with a radius r′i according to (1). In this way,
given the path loss threshold PLmax

i of gi, a convex relationship
between varying altitude hi and radius ri is obtained, which is
visualized as resembling the shape of a balloon. This relationship
reveals an extreme point where the largest radius (transmission
range) and its corresponding optimum altitude can be found.
Moreover, due to the heterogeneity of GNs, each gi has a

Fig. 3. Based on (1), each gi has a data transmission range (si(hi), fi(hi))
at altitude hi, and requires a minimum time τi to upload data within this range.
The UAV collects data from one GN at a time. Consequently, The UASS-GTS
problem is to determine the UAV altitude-speed scheduling to ensure each gi
has enough time to transmit data while minimizing the energy consumption.
However, there is a tight coupling between altitude scheduling and speed
scheduling. Each GN has a preferred altitude (optimum transmission range) for
speed scheduling, but frequent adjustments to these altitudes increase energy
costs. Conversely, altitude scheduling aims to minimize adjustments, leading to
less efficient altitudes and higher energy costs.

different path loss threshold PLmax
i , mapping into a unique

altitude-radius function. Accordingly, we use Fig. 3 to illustrate
this system model.

The UAV altitude scheduling involves designing the flight
altitude scheduling of the UAV, where the flight altitude, hi,
over each GN, gi, is determined, as depicted by h1, h2, . . . , hn

in Fig. 3. Practically, we assume that the UAV does not adjust its
altitude within the transmission range of a GN and the regulated
minimum and maximum flight altitudes are denoted asHmin and
Hmax, respectively. Additionally, we define the valid maximum
altitude of the communication model for gi as Hi

max, which is
considered when ri → 0. Consequently, we have the following
altitude constraint:

Hmin ≤ hi ≤ Hi
max. (2)

In our scenarios, the UAV can adjust its flight altitude between
any adjacent GNs, such as from hi−1 at GN gi−1 to hi at the
next GN gi, hence the altitude adjustment energy consumption
is required, denoted as Eh

i , according to the work in [8]:

Eh
i = ηΔ(hi, hi−1), i ≥ 2, (3)

where η is the correlation coefficient of altitude adjustment, and
Δ(hi, hi−1) is the absolute value of the difference between hi

and hi−1. For instance, as depicted in Fig. 3, the UAV follows
the flight path (shown in green). However, in the overlapping
between g1 and g2, the UAV ascends (shown in orange), intro-
ducing energy consumption Eh

2 , which is correlated with the al-
titude adjustment differenceΔ(h2, h1). If no altitude adjustment
occurs at gi, then Δ(hi, hi−1) = 0. The energy consumption for
altitude scheduling over all n GNs is thus expressed as follows:

Ealtitude = η

i=n∑
i=2

Eh
i = η

i=n∑
i=2

Δ(hi, hi−1). (4)

According to the communication model in (1), for any given
flight altitude of the UAV, there exist a data transmission range
of GN within which the UAV can collect data from GNs. For GN
gi, we denote the data transmission range as (si(hi), fi(hi)),
where si(hi) and fi(hi) are the starting and ending positions
of the range respectively, and are dependent on the altitude hi.
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The UAV can collect data from gi only if its horizontal position
falls between si(hi) and fi(hi). Furthermore, each GN has a
certain amount of data waiting to be collected. Let τi denote the
minimal time required for the UAV to finish data collection from
gi, which can be calculated given the data amount and the data
transmission rate [53]. Note that τi may vary between different
GNs due to the heterogeneous sensed tasks. An example of the
settings is given in Fig. 3. We assume each pair of adjacent GNs
have an overlapping transmission range, otherwise, there is a
gap between them. In this case, we can divide this problem into
two smaller and independent sub-problems because the UAV
scheduling before and after the gap does not affect each other.

The UAV speed scheduling is represented by the speed
scheduling function, denoted as v(t), determining the UAV flight
speed at any given time t. The position of the UAV, e.g., the
distance from the initial point of this part of horizontal flight on
the x-axis, can be denoted as d(t). We assume the UAV collects
data from GNs when it is flying, whether it flies horizontally or
changes altitude, but it collects from one GN at a time because
they share the same communication channel. Considering the
distribution of the transmission ranges, it is evident that the UAV
collects data from GNs sequentially, e.g., following the order of
their indices. Let t′i and ti be the starting and finishing time for
the collection of gi, respectively, where i = 1, . . . , n. When the
UAV flies horizontally, we have t′i = ti−1. However, if the UAV
adjusts its altitude from gi−1 to gi, then t′i > ti−1. To ensure that
the data collection is within the transmission range of GN, it is
necessary to impose the following range constraint:

si(hi) ≤ d(t′i) < d(ti) ≤ fi(hi), ∀i. (5)

Furthermore, τi is the minimal transmission time required for the
UAV to finish data collection from gi, so we have the following
completion constraint,

ti − t′i ≥ τi, ∀i. (6)

Let p(v) represent the flight power consumption for the UAV
at a given flight speed v. We define the energy consumption
of the UAV during speed scheduling as Espeed, which can be
calculated by the following equation:

Espeed =

∫ tn

t0

p(v(t)) dt. (7)

We denote the total UAV energy consumption, including the
energy for both speed scheduling and altitude scheduling, as
Eall. This can be computing using the following equation:

Eall = Ealtitude + Espeed. (8)

C. Problem Formulation

We are now ready to define the problem.
Definition 1 (UASS-GTS problem): Given a set of GNs and

models mentioned above, the UAV altitude-speed scheduling
and GN transmission switching (UASS-GTS) problem aims
to find the flight altitude scheduling hi, i = 0, 1, . . . , n, speed
scheduling function v(t), transmission switching times ti, i =

TABLE II
KEY NOTATION

0, 1, . . . , n, such that the energy consumption in (8) is mini-
mized while altitude constraint (2), range constraint (5) and
completion constraint (6) are satisfied.

IV. SOLUTION TO BASIC-UASS-GTS PROBLEM

The UASS-GTS problem is quite complicated as there is
a tight coupling between the altitude scheduling and speed
scheduling of UAV. On one hand, optimizing speed schedul-
ing requires the UAV to adjust its altitude for optimal data
transmission range of GN, which results in increased energy
consumption due to altitude adjustment. Conversely, optimizing
for altitude scheduling maintains the UAV at a minimal change
or fixed altitude, preventing it from being in the optimum data
transmission range and thus failing to minimize the energy cost
of speed scheduling.

Intuitively, we simplify the UASS-GTS problem by first ad-
dressing a basic case, formally referred to as the basic-UASS-
GTS problem, where the UAV flies at a fixed altitude, denoted
as Hu. As a result, in this basic problem, we only consider
the UAV speed scheduling and GN transmission switching. Let
Hmin

max denote the minimum of the maximum altitudes across all
communication models, defined as Hmin

max = min1≤i≤n H
i
max.

For brevity, let the data transmission range of gi at altitude Hu,
(si(Hu), fi(Hu)), abbreviated as (si, fi), and a visual represen-
tation is provided in Fig. 4. We then define the basic-UASS-GTS
problem as follows:

Definition 2 (basic-UASS-GTS problem): A UASS-GTS
problem is called a basic-UASS-GTS problem if it satisfies the
following condition: during the entire data collection, the flight
altitude scheduling of the UAV maintains it at a fixed altitude,
denoted as Hu, constrained within the interval, Hmin ≤ Hu ≤
Hmin

max, to ensure the completion of all data collection.
In this section, we only focus on addressing the basic-UASS-

GTS problem by mapping it to the crossing-the-rooms problem
and then providing some interesting optimal properties for it.

A. Crossing-the-Rooms Problem and Some Optimal Properties

1) Crossing-the-Rooms Problem: We first introduce the
time-distance diagram. On a time-distance diagram, any point
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Fig. 4. The basic-UASS-GTS problem simplifies the UASS-GTS problem
by assuming the UAV flies at a fixed altitude Hu within [Hmin,H

min
max] to

complete all data collection. It aims to schedule the UAV’s speed to ensure each
gi has enough time to upload data within its data transmission range (si, fi),
while minimizing the UAV flight energy. However, slower speeds allow more
data transmission time but consumes more energy, while faster speed may save
energy but risks incomplete data collection. Therefore, an optimal trade-off is
essential.

Fig. 5. The distance accumulation trajectory d(t) crosses the rooms. For gi,
we draw a rectangle (virtual) Room i: north wall d = fi, south wall d = si, west
wall t = ti−1, east wall t = ti, while ti − ti−1 ≥ τi. A feasible trajectory d(t)
must cross through all these rooms and pass through doors. The crossing-the-
rooms problem essentially asks two questions: (1) how to construct the rooms,
specifically how to determine the length of each room, (2) how to design the
trajectory crossing all the rooms and passing through doors, such that the UAV
energy is minimized.

(t, d) represents reaching position d at time t. Originally, at
t = 0, the UAV is at d = 0. Therefore, the distance function d(t)
can be plotted as a curve on this diagram, named as distance
accumulation trajectory, which starts at the origin (0,0). The
speed scheduling function v(t) is essentially the slope of the
distance accumulation trajectory. Hence, finding the optimal
UAV speed scheduling is equivalent to finding the optimal
distance accumulation trajectory on a time-distance diagram.

As shown in Fig. 5, such a trajectory is not free to move
on the diagram; it has constraints. These constraints arise from
the range constraint and the completion constraint imposed on
the speed scheduling function v(t). More specifically, the range
constraint indicates any GN gi has a spatial constraint on the
transmission range, confined between d = si and d = fi, and
the completion constraint indicates a temporal constraint on the
required transmission times, between t = ti−1 and t = ti, where
ti − ti−1 ≥ τi. Consequently, for gi, we draw a rectangle Room
i: the north wall at d = fi, the south wall at d = si, the west
wall at t = ti−1, the east wall at t = ti. Since ti−1 and ti are
the collection starting time and collection finish time for GN
gi, between which the UAV must fly within transmission range
(si, fi), so the distance accumulation trajectory must be within

such rectangle region. Therefore, we construct a serial of virtual
rooms for GNs, and Room i is with width (Y -axis) (fi − si)
and length (X-axis) (ti − ti−1). Between two adjacent rooms,
Room i and Room i+ 1, there is a Door i connecting them. The
door is at t =

∑i
j=1 τj and with size (si+1 − fi), as shown in

Fig. 5. A feasible distance accumulation trajectory must cross
through all rooms and pass through doors.

The crossing-the-rooms problem essentially asks: (1) how to
construct the rooms, specifically how to determine the length
of each room, and (2) how to design the trajectory crossing
all the rooms and passing through doors, such that the UAV
energy is minimized. Note that the shape of this trajectory
directly influences the energy consumption due to the convex
relationship between flight speed and power consumption.

Solving the crossing-the-rooms problem is equivalent to solv-
ing the basic-UASS-GTS problem. This is because the former
corresponds to asking the GN transmission switching times,
whereas the latter corresponds to asking the UAV speed schedul-
ing function. We will introduce the looking before crossing
rooms algorithm to optimally solve the crossing-the-rooms prob-
lem which is inspired by the data flow model in [54]. The solution
is uniquely mapped to the original basic-UASS-GTS problem.

2) Some Optimal Properties: An immediate lemma follows
directly from the above discussion.

Lemma 1: A feasible distance accumulation trajectory must
be within the rooms.

We want to find amongst all feasible trajectories the one with
the minimal energy consumption.

Lemma 2: For any two given time intervals, the UAV con-
sumes the minimum energy if and only if a common flight speed
is used for both time intervals (if allowed).

Proof: Suppose there are two time intervals with duration τx
and τy . The UAV flight speeds are constant inside each duration,
and they are vx and vy , respectively. We need to show that
using the average speed v̄ =

vxτx+vyτy
τx+τy

in both intervals is more
energy efficient than using any two different speed, vx �= vy .

p

(
vxτx + vyτy
τx + τy

)
= p

(
τx

τx + τy
vx +

τy
τx + τy

vy

)

(a)
<

τx
τx + τy

p(vx) +
τy

τx + τy
p(vy). (9)

The inequation (a) is because of the convex property of the
function p(v) and the fact that vx �= vy. Hence, we have

(τx + τy)p

(
vxτx + vyτy
τx + τy

)
< τxp(vx) + τyp(vy),

which clearly shows that using a common speed can reduce
energy consumption. �

We have the following theory on the trajectory as a direct
result of Lemma 2.

Theorem 1: The optimal trajectory is straight between any
two points, as long as it is feasible.

Any non-straight trajectory between two points can be
straighten to have the same slope, i.e., speed, to save energy.
This method is called straightening.

Authorized licensed use limited to: Southeast University. Downloaded on December 20,2025 at 16:05:16 UTC from IEEE Xplore.  Restrictions apply. 



11358 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 11, NOVEMBER 2025

From Fig. 2, it can be easily seen that there is a speed at
which the power consumption is the lowest. Let such speed be
denoted as v#. Note that, flying at v# only means that the UAV
consumes the minimum power. The flight energy consumption
is not necessarily minimized, because the speed v# may be
slow and result in a long duration to cover a certain distance.
Therefore, the next lemma introduces a speed v∗ that minimizes
the energy consumption.

Lemma 3: For any given flight distance, the UAV consumes
the minimum energy if and only if it flies at speed v = v∗, where
v∗ is a constant as long as p(v) is given and fixed.

Proof: Assume the given flight position interval is (dx, dy),
hence the flight distance is L = dy − dx. Let t be the time spent
to cover this distance. According to Lemma 2, the UAV con-
sumes the minimum energy only when flying at a constant speed,
v = L

t . So, the total energy consumption E0 = tp(v) = p(v)
v L.

Define a function h(v) = p(v)
v , so h′(v) = 1

v (p
′(v)− p(v)

v ).
Since p(v) has its minimum value at v#, when v ∈ (0, v#), p(v)
decreases, so p′(v) < 0, then h′(v) < 0. When v ∈ (v#,+∞),
p(v) increases, so p′(v) > 0 but the sign of h′(v) depends on
function p(v). More specifically, the sign of h′(v) depends
on which one is larger, p′(v) or p(v)

v . For any given position
(v, p(v)), v > v#, on the speed-power diagram, p′(v) can be
represented by the slope of the tangent line, and p(v)

v can be
represented by the slope of the line connecting (v, p(v)) to
(0,0). There are two possible cases: the two slopes are equal at
some point or they never become equal. In case they are equal,
equation p′(v)− p(v)

v = 0 must have a solution, and let it be
v = vm. Hence, h′(v) < 0 if v < vm, and h′(v) > 0 if v > vm,
and h(v) has the minimum value at v = min{vm, vmax}, where
vmax is the maximum flight speed. In case they never are equal,
h′(v) < 0 for∀v ∈ (0, vmax], andh(v)monotone decreases with
minimum value at v = vmax.

In conclusion, the UAV consumes the minimum energy
when v = v∗, where v∗ is equal to vm or vmax, depending
on p(v). �

We have the following theorem on the trajectory.
Theorem 2: Any point of the optimal trajectory has a slope

no larger than v∗.
Proof: We only provide the sketch of the proof. Intuitively,

for an interval in which the UAV speed exceeds v∗, we modify
it to v∗, which is more energy-efficient. In this way, the UAV
flies slower and thus more time is available to collect data from
GNs, so the upload duration requirements of every GN can still
be satisfied. �

B. Common Starting and Ending Position Cases

How to construct all these rooms and how to design an op-
timal trajectory crossing these rooms, are still very challenging
questions. To obtain some useful insights, this section studies
two basic cases, i.e., the common starting position case and the
common ending position case.

1) The Common Starting Position Case: In this case, each
GN has the same transmission range starting position, s1 =
s2 = · · · = sn = 0. But their ending positions are different:

0 < f1 < f2 < .. < fn = D. This case is referred to as the
basic-UASS-GTS problem with common starting position. Be-
fore we present the looking before crossing virtual rooms al-
gorithm that produces the optimal trajectory, we would like to
introduce some properties of the optimal trajectory. �

Lemma 4: The optimal trajectory changes its direction only
by increasing the slope.

Proof: Suppose, on the contrary, the optimal trajectory
changes its direction by decreasing its slope at point (t, d), from
v1 to v2. Assume straight line between (t1, d1) and (t, d) is
with slope v1, while straight line between (t, d) and (t2, d2) is
with slope v2. Since v1 > v2, the trajectory between (t1, d1)
and (t2, d2) can be straighten to be a straight line with slope
v to save more energy according to Theorem 1. We next show
that straightening such two straight lines is feasible. Because
the south walls of all rooms are at d = 0, such straightening
generally moves the trajectory towards the south, not crossing
the south wall. In other words, after the modification, the UAV
spends more time collecting data in (d1, d) and less time in
(d, d2) given v1 > v > v2. Since all GNs starting positions are
d = 0, this modification is always feasible. This is a contradic-
tion since the optimal trajectory is modified to be even more
energy efficient. �

Lemma 5: The optimal trajectory changes its direction only
at a northern doorjamb.

Proof: We prove this by contradiction. Consider part of the
optimal trajectory, between point (t1, d1) and (t2, d2). As-
sume there is only one changing point (t, d), and it is not a
northern doorjamb. We then try to straighten these two lines.
There are two cases depending on whether connecting (t1, d1)
and (t2, d2) directly is feasible. In case it is feasible, then a
contradiction arises since straightening saves energy. In case
it is not feasible, then there must be at least one northern
doorjamb inside the triangle of (t1, d1), (t2, d2) and (t, d). We
therefore choose one as the new slope change point (t′, d′).
Let τ1, τ2, τ

′
1, τ

′
2 be the old and new time spent before and

after changing, i.e., τ1 = t− t1, τ2 = t2 − t, τ ′1 = t′ − t1, τ
′
2 =

t2 − t′. Let v1, v2, v′1, v
′
2 be the old and new speeds before and

after changing, i.e., v1 = (d− d1)/τ1, v2 = (d2 − d)/τ2, v
′
1 =

(d′ − d1)/τ
′
1, v

′
2 = (d2 − d′)/τ ′2. Then, we must have v1 < v′1

and v2 > v′2. Since the distance covered and duration spent do
not change, we have the following equations.

v1τ1 + v2τ2 = v′1τ
′
1 + v′2τ

′
2,

τ1 + τ2 = τ ′1 + τ ′2.

Combine the two equations by division, we have

τ1
τ1 + τ2

v1 +
τ2

τ1 + τ2
v2 =

τ ′1
τ ′1 + τ ′2

v′1 +
τ ′2

τ ′1 + τ ′2
v′2.

By the convexity of the p(v) function and v1 < v2, we have

τ1
τ1+ τ2

p(v1)+
τ2

τ1+ τ2
p(v2) >

τ ′1
τ ′1+ τ ′2

p(v′1)+
τ ′2

τ ′1 + τ ′2
p(v′2).

So,

τ1p(v1) + τ2p(v2) > τ ′1p(v
′
1) + τ ′2p(v

′
2).
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Fig. 6. The common starting position case. We first construct n rooms with
minimal time as their length, i.e., Room i with length τi. Then, standing at the
origin, we look to the east. If multiple northern doorjambs are in view, we choose
the farthest one and cross the rooms to walk there. Standing at the new position,
we repeatedly look east and choose the farthest doorjamb as the next stop, until
we reach the destination. In case the trajectory slope is higher than v∗ in some
rooms, we reconstruct these rooms by enlarging the length such that the slope
equals v∗.

Algorithm 1: BASIC-UASS-GTS-COSTART.

Thus, the optimal energy consumption is further improved,
which is a contradiction. �

The optimal trajectory can thus be easily determined if all the
optimal doorjambs at which the trajectory changes are known.
However, how to determine these doorjambs? we present the
looking before crossing technique in three phases.

In the first phase, set the length for each room i as τi, the
minimal value. These rooms have their south wall at the same
location d = 0, while north walls are different, d = fi. There is
no need to consider the south wall and southern doorjamb. The
east wall of Room i (west wall of Room i+ 1) is at t =

∑i
j=1 τj ,

as shown in Fig. 6.
In the second phase, i.e., the main steps, the core idea is quite

simple. Standing at the current position (initially at the origin),
look to the east. Multiple northern doorjambs may be in view.
We choose the farthest northern doorjamb in view and cross the
rooms to walk there. Standing at the new position, we repeatedly
look east and choose the farthest doorjamb as the next stop.
Assume the northeast corner of the last room is a virtual northern
doorjamb, this procedure stops until no room to cross.

In the third phase, we modify and reconstruct some rooms if
the slope is higher than v∗. The room lengths are enlarged such
that the slope equals v∗.

We present the formal steps of this method in Algo-
rithm BASIC-UASS-GTS-COSTART.

These three phases are in Line 2, Line 3-8 and Line 9-11,
respectively. It can be seen that the second phase, i.e., the while
loop, is the main phase. In each while iteration, one piece of
the trajectory is calculated by finding the next stop point. knv in
Line 4 is such point and vnv in Line 5 is the trajectory slope.
After the first changing point is found, the next stop point can
be computed using the same method, but from the new position.
Note that if the computed speed is larger than v∗ as in Line 6,
the third phase begins.

Theorem 3: Algorithm BASIC-UASS-GTS-COSTART pro-
duces the optimal distance accumulation trajectory for the
offline basic-UASS-GTS problem with a common transmission
range starting position within O(n2) steps.

Proof: Since the algorithm repeats to find all trajectory pieces
one by one, we prove the produced trajectory is optimal by
showing its first piece is optimal. The first trajectory is set
at either Line 7 or Line 11. We will prove both of them are
optimal.

The farthest northern doorjamb in view knv is computed in
Line 4, while its corresponding speed is given vnv in Line 5.
(1). We now prove, in case vnv ≤ v∗, connecting (tk, fk) and
(tkn

v
, fkn

v
) is the first optimal trajectory piece, where k = 0 in the

first iteration. Suppose otherwise, the first piece ends at another
point (t, d). According to Lemma 5, point (t, d) must be a north-
ern doorjamb. Let (t, d) = (tkopt , fkopt), for some kopt �= knv . It
is impossible kopt > knv because the northern doorjamb beyond
knv is not in view, such trajectory piece will go outside rooms
which are infeasible. It is impossible kopt < knv as well, because
vnv is the smallest by Line 4 and 5, if the first trajectory piece
ends at any doorjamb before knv , then there must be a following
trajectory piece with a smaller slope, contradicting to Lemma 4.
Hence, the first case is proved. (2). In case vnv > v∗, connecting
(tk, fk) and (tn, fn) is the first optimal trajectory piece, where
k = 0 in the first iteration. Because tn = (fn − fk)/v

∗ + tk
in Line 10, we have the slope of this trajectory piece as v∗.
Besides, this trajectory piece is feasible, because, vnv is the
smallest slope and v∗ is even smaller. By Lemma 3, using v∗ is
optimal.

The dominant operation in this algorithm is the while loop.
Inside the loop, the computation of knv in Line 4 dominates,
which takesn steps to calculate and find the minimum value. The
while loop repeats at most n times, because in each iteration,
variable k increases at least 1, and the loop terminates after
k ≥ n. Therefore the time complexity of this algorithm isO(n2).

2) The Common Ending Position Case: In this subsection,
we study another basic case and derive additional properties of
the optimal trajectory. In the common ending position case, each
GN has the same transmission range ending position, f1 = f2 =
· · · = fn = D. This is called the basic-UASS-GTS problem with
common ending position.

Similar to the previous basic case, we have the following
properties for the optimal trajectory. The proofs are analogous
to previous ones and are left to the readers due to the space
limitations. It is suggested to draw a graph for this case, similar
to Fig. 6, to aid in understanding the following two lemmas.

Lemma 6: The optimal trajectory changes its direction only
by decreasing the slope.
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Lemma 7: The optimal trajectory changes its direction only
at a southern doorjamb.

We apply the looking before crossing technique to find the
optimal distance accumulation trajectory in three phases. We
first construct rooms with minimal length. Then, we find the next
stop by looking east and choose the farthest southern doorjamb.
We then cross the rooms to walk there and repeatedly looking
and crossing. Assume the northeast corner of the last room is a
virtual southern doorjamb, this procedure stops until no room
to cross. It is possible that in some rooms, the trajectory has a
slope larger than v∗ during the process. Suppose this happens
for the first k rooms, then we enlarge these rooms in length such
that the trajectory has a slope equal to v∗.

A formal algorithm and its proof are omitted because of
space limitations. They are similar to the previous algorithm
and Theorem 3.

C. Looking-Before-Crossing Algorithm for General Case

In the general case, there are no restrictions on the range
of starting positions and ending positions. As a result, the
optimal trajectory can change its direction by both increasing
and decreasing the slope. The following lemma states how these
changes occur.

Lemma 8: The optimal trajectory changes its direction only
at doorjambs: increasing slope at a northern doorjamb or de-
creasing slope at a southern doorjamb.

This lemma is an combination of Lemma 4, 5, 6 and 7, thus
the proof is similar to the previous ones and left for the readers.

The looking before crossing algorithm produces the optimal
trajectory in three phases. In the first phase, rooms are con-
structed, i.e., each Room i with length τi, as shown in Fig. 5.
Note that, each room may have different south and north walls.
In the second phase, we find a walking trajectory crossing all the
rooms, starting at the origin and ending at the northeast corner.
In the third phase, some rooms are reconstructed by enlarging
their length. Note that, when a room length is enlarged, all the
rooms on the east are moved accordingly. The first and third
phases have been discussed in detail in the previous section.

The high-level idea of the second phase, i.e., the main part of
the looking before crossing algorithm, is as follows. It is obvious
that if standing at the origin, we can view directly (through
doors) the northeast corner, then this straight line is the optimal
trajectory. However, if the view is blocked by walls, we need to
find another way around it. It is clear that the view angle narrows
progressively with each door. After looking through the first
door, the northern boundary of the view angle is constrained by
the northern doorjamb, and the southern boundary is constrained
by the southern doorjamb. The view angle continues to narrow
with each subsequent door until it is blocked entirely. Suppose,
standing at the origin, we can see as far as Room i and part of its
wall. Door i may be on the northern/southern side of the visible
wall. We then walk along the northern/southern boundary of
the view angle until we reach and stop at the farthest doorjamb.
Standing at the new position, the looking before crossing strategy
is repeated in the same way. Eventually, there will be no further
room to cross.

Algorithm 2: BASIC-UASS-GTS-GENERAL.

We present the formal steps of this method in Algo-
rithm BASIC-UASS-GTS-GENERAL.

Theorem 4: Algorithm BASIC-UASS-GTS-GENERAL pro-
duces the optimal distance accumulation trajectory for the of-
fline basic-UASS-GTS problem within O(n2) steps.

Proof: Similar to the proof of Theorem 3, we demonstrate
the produced trajectory is optimal by showing its first piece is
optimal. The first trajectory piece ends at (1) a northern doorjamb
as in Line 8, (2) a southern doorjamb as in Line 11, and (3)
directly at the destination as in Line 15.

The case (3) is obviously optimal. We prove (1) is optimal as
well, and the case (2) is symmetry and left for the readers. In case
(1), because the destination is not in direct view, then, according
to Lemma 8, we know the first piece ends at a doorjamb point. It
is known that in Line 8, the view angle has its northern boundary
bounded by the northern doorjamb of Door kvn. At the same time,
the southern boundary is bounded by the southern doorjamb of
Door kvs . The southern doorjamb of the next door j is outside
the view angle, on its north side. The algorithm has chosen the
northern doorjamb of Door kvn as the ending of the first piece
of trajectory. Suppose, on the contrary, that another doorjamb is
the optimal ending point of the first piece. In that case, such a
doorjamb must not be beyond j, because this would be infeasible
(trajectory not within rooms). This doorjamb must not be a
northern doorjamb before or after kvn, because otherwise, the
trajectory can be improved. Similarly, such a doorjamb must
not be a southern doorjamb before or after kvs . In conclusion, the
only possibility is that such doorjamb is the southern doorjamb of
doorkvs . We have shown the resulting trajectory can be improved,
too. To pass through door j, such trajectory must go north,
crossing the northern boundary of the view angle. Let such a
crossing point be (t, d). By Theorem 1, the trajectory between
point (tk, dk) and (t, d) can improved by straightening. This is
a contradiction.
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Fig. 7. Looking before crossing rooms. In (a), standing at the origin, the view angle through door 1 is in pink and the angle through door 2 is in red. No view
through door 3, which is beyond the northern boundary of the current (red) view angle. Therefore, we walk along the northern boundary, reaching the farthest
doorjamb. In (b), standing at the new position, two new view angles are in pink and red respectively. Since the northeast corner is beyond the southern boundary
of the current view angle, we walk along the southern boundary to the farthest doorjamb. In (c), it can be seen that the lasted trajectory slope, in Room 3 and 4, is
larger than v∗, hence we enlarge the lengths of Room 3 and 4 to reduce the slope to v∗. In (d), all room lengths and trajectories are determined.

The while loop repeats one most n times, because each
iteration k increases at least 1, and the loop terminates af-
ter k ≥ n. Within the while body, the for executes no more
than n times. Therefore, the time complexity of this algorithm
is O(n2).

An example of the proposed looking before crossing algorithm
is illustrated in Fig. 7.

V. SOLUTION TO UASS-GTS PROBLEM

In the previous section, we introduced the looking before
crossing algorithm to address the basic-UASS-GTS problem,
focusing on the UAV speed scheduling, which is a simplified
case of the UASS-GTS problem. In this section, we propose
the Altitude-Speed Scheduling of UAV for Minimizing Energy
(ASSUME) algorithm to solve the UASS-GTS problem. This
algorithm extends the looking before crossing approach by in-
tegrating joint altitude scheduling through a dynamic program-
ming method.

From the basic-UASS-GTS problem to the UASS-GTS prob-
lem, the most critical issue is determining the flight altitude
scheduling of the UAV to minimize the total energy consump-
tion. Here, we use the dynamic programming technique to
find the optimal flight altitude scheduling. Specifically, first,
we discretize the altitude with a granularity of δ. Accord-
ing to the regulated maximum Hmax and minimum altitude
Hmin, there are �Hmax−Hmin

δ � adjustable altitudes. We define
the sub-problem function F(i, h) to characterize the minimum
energy consumption of the UAV collecting data from the first
i GNs, with the last flight altitude of the UAV over gi being
h. In other words, if we map this procedure into a dynamic
programming table, the value of each cell in i-th column andh-th
row is filled with F(i, h). Similarly, F(j − 1, h′) can represent
a sub-problem where the UAV collects data from the first j − 1
GNs, with the last flight altitude being h′. We use H(h, h′) to
denote the energy cost of changing from altitude h′ to altitude
h, based on (3). Let C(j, i, h) denote the energy cost during the
UAV speed scheduling from gj to gi at a fixed altitude h, which
can be calculated by Algorithm BASIC-UASS-GTS-GENERAL.
Note that this altitude h is constrained by Hmin ≤ h ≤ Hk

max,
for j ≤ k ≤ i, to ensure a valid altitude for data collection
from gj to gi. Formally, the transition equation of this dynamic

Fig. 8. The update procedure for F(i, h). F(i, h) represents the sub-problem
function to characterize the minimum energy consumption of the UAV collecting
data from the first i GNs, with the last flight altitude of the UAV being h.
Similarly, F(j − 1, h′) denotes the sub-problem function that the first j − 1
GNs, with the last flight altitude of the UAV being h′. H(h, h′) is the energy
cost of changing from altitude h′ to altitude h, and C(j, i, h) is the energy cost
during the UAV speed scheduling for data collection data from gj to gi at altitude
h, as calculated by Algorithm BASIC-UASS-GTS-GENERAL.

Fig. 9. A sample showcasing the update procedure for the sub-problem
function F(i, h) by fulfilling a two-dimensional table where the row is the
altitude h varying from Hmin to Hmax with a discretization granularity δ, and
the column is the indexed GN i, i ∈ {1, . . . , n}.

programming method can be written as follows:

F(i, h) =

⎧⎪⎨
⎪⎩
0, i = 0,

max
Hmin≤h′≤Hmax,0<j≤i

{F(j − 1, h′)

+H(h, h′) + C(j, i, h)}, i > 0,

(10)

which indicates that if i = 0, ∀h,F(0, h) = 0; otherwise, we
update F(i, h) by iterating j from 1 to i one by one, h′ from
Hmin toHmax in a step of δ, calculating the sum ofF(j − 1, h′),
H(h, h′) and C(j, i, h), and selecting the minimum value. For
better illustration, we demonstrate the update of F(i, h) in our
scenarios in Fig. 8, and the corresponding dynamic program-
ming schematic is displayed in Fig. 9. Eventually, this dynamic
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Algorithm 3: ASSUME.

programming algorithm returns the optimum value F(n, h) =
0, Hmin ≤ h ≤ Hn

max, i.e., the minimum energy consumption.
More details of this solution are shown in Algorithm ASSUME.

Theorem 5: Algorithm ASSUME produces the optimal so-
lution for the UASS-GTS problem within O(n4 (Hmax−Hmin)

δ )
steps.

Proof: In Algorithm ASSUME, we employ Algorithm BASIC-
UASS-GTS-GENERAL in Line 10 to compute the energy con-
sumption for data collection from GN gj to gi at a specific
altitude h, C(j, i, h). This computation is proven to be optimal,
as asserted in Theorem 4. Moreover, the energy consumption of
altitude adjustments calculated by (3), H(h, h′), is also deter-
mined. Therefore, based on the optimal properties of dynamic
programming, Algorithm ASSUME can produce the optimal
solution for the UASS-GTS problem.

The main body of Algorithm ASSUME includes three
For loops, the first For loop iterates at most n times, the
second For loop requires (Hmax−Hmin)

δ iterations, and the
third For loop also iterates at most n times. Moreover,
we call Algorithm BASIC-UASS-GTS-GENERAL in Line 10,
which produces the optimal solution within O(n2). Thus,
the total number of steps for Algorithm ASSUME is within
O(n4 (Hmax−Hmin)

δ ). �
Remarks: First, although in theoretical analysis, the dynamic

programming process in Algorithm ASSUME is complexity is
proportional to the number of GNs and altitude levels, during
practical algorithm execution, the number of valid states typ-
ically remains below n2 (Hmax−Hmin)

δ . This is because states
F(i, h) that fail to meet the altitude constraint, i.e., exist k
where h > Hk

max, j ≤ k ≤ i, are discarded, which prevents the
algorithm from exploring all possible states. Section VII will
show the practical performance of Algorithm ASSUME that is
capable of handling most real-time applications. Second, some
proactive pruning strategies can be applied to further improve
the performance of Algorithm ASSUME, such as eliminating the
states early if h exceeds the minimum altitude between gj and
gi. To further reduce the search space, a coarse-to-fine adaptive
discretization method [55], [56], [57] can be employed, which
controls the granularity of altitude discretization by dynami-
cally adjusting the altitude varying step, i.e., δ. This effectively
balances the trade-off between accuracy and computation time,

Algorithm 4: ASSUME-ONLINE.

which is demonstrated based on the specific requirements of the
scenario.

VI. ONLINE HEURISTIC

In the previous section, Algorithm ASSUME was proposed to
produce the optimal altitude and speed scheduling for the UASS-
GTS problem. However, this algorithm relies on the known
information of GNs, including the communication transmission
model of GN and the required transmission time. In practice, the
UAV does not always have access to all GN information before-
hand. Therefore, in this subsection, other than the data trans-
mission range, we define the control communication range [58],
which is generally much larger than the data transmission range
but has a slower transmission rate.

Following the work in [59], we propose an online altitude-
speed scheduling algorithm. The core idea of this algorithm is
that we only schedule for the GNs within the control communi-
cation range, and more details of the algorithm are presented in
Algorithm ASSUME-ONLINE. First, the UAV keeps an active list
(AL) of GNs that is initialized to empty, and the initial position
of the UAV is 0 as shown in Line 1. The UAV continuously
broadcasts information about the GNs, such as data amount to
be transmitted, data transmission rate, location information, and
communication model. At each iteration, we add these GNs that
enter the control communication range of the UAV to AL in
Line 5. Subsequently, if there are new GNs in AL compared
to the last iteration, we record the information of all GNs in
AL and invoke the offline algorithm, i.e., Algorithm ASSUME,
to generate a schedule ScurPos for these GNs, as indicated in
Line 7. If the new GN does not overlap with the previous one, we
only need to compute for the new GN, making the process more
efficient. After that, we update the data collection requirements
of each GN, as written in Line 11 and 13. Specifically, let Lstep

be the movement distance of the UAV in this iteration, and vi be
the speed of GN gi from the output schedule ScurPos, if all data
can be collected during the time Lstep/vi, we remove gi from
AL, otherwise, we update the required time τi. We repeat the
procedures in the While loop in Line 2 until all GNs are served.

Fig. 10 gives an example of the online heuristic algorithm. At
first, the AL includes three GNs i.e., g1, g2, g3, and we invoke
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Fig. 10. An example of the online heuristic algorithm. Initially, the active list
(AL) includes three GNs i.e., g1, g2, g3, and we invoke the offline algorithm to
compute for AL. AL changes as the UAV moves forward. Specifically, there are
new GNs g4, g5 that fall within the control communication range of the UAV,
while g1 and g2 finish the data collection and are removed from AL. Note that
g3 is left since its data collection is not yet complete. Repeat this procedure until
the data of all GNs are collected.

the offline algorithm to compute for AL. Then the AL changes
as the UAV moves forward. The new GNs g4, g5 fall into the
control communication range of the UAV, while g1 and g2 finish
the data collection, removed from AL. Note that g3 is left since
the collection is not all complete yet. Repeat this procedure until
n GNs are served.

The following theorem analyzes the competitive ratio of
Algorithm ASSUME-ONLINE by comparing it with the optimal
offline solution, as follows.

Theorem 6: Algorithm ASSUME-ONLINE achieves a com-
petitive ratio of 1 + 2 ΔHη

crange
compared to the optimal offline

solution, where ΔH = Hmax −Hmin is the maximum flight
altitude difference, η is the correlation coefficient of altitude
adjustment, and crange is the control communication range.

Proof: Let onAlg be the solution from Algorithm ASSUME-
ONLINE, and offOpt denote the optimal offline solution from
Algorithm ASSUME. We begin by constructing a modified
version of Algorithm ASSUME-ONLINE, denoted as onAlg′. In
this version, we divide the total flight path, L, into k = 
 L

crange
�

segments. We compute the flight scheduling for each segment,
disregarding the energy cost for altitude changes between adja-
cent segments. Clearly, it has onAlg ≤ onAlg′ + kΔHη.

Next, we focus on a single segment i ∈ [1, k]. Let onAlg′(i)
and offOpt(i) denote the UAV’s energy consumption in seg-
ment i for onAlg′ and offOpt, respectively. Since onAlg′

applies Algorithm ASSUME to find the optimal solution for
the GNs of each segment i, while offOpt directly invokes
it for all GNs along the entire flight path, we establish that
onAlg′(i) ≤ offOpt(i). Accordingly, we can conclude that
onAlg′ =

∑k
i=1 onAlg′(i) ≤ ∑k

i=1 offOpt(i) = offOpt.
Now, we add the energy consumption of altitude adjustment

for onAlg′, which is at most kΔHη. Thus, we have

onAlg

offOpt
≤ onAlg′ + kΔHη

onAlg′
≤ 1 +

ΔHη
(

L
crange

+ 1
)

p(v∗) L
v∗

(a)

≤ 1 +
ΔHη

crange
+

ΔHη

L
(b)

≤ 1 + 2
ΔHη

crange
(11)

where inequality (a) is due to p(v∗)
v∗ ≈ 1.05 calculated from our

real-world flight tests in Section III, and inequality (b) is due
to L ≥ crange. This leads us to conclude that the competitive

TABLE III
PARAMETER SETTINGS

ratio is 1 + ΔHη
crange

. Notably, when the information of GNs
is completely known, i.e., crange → ∞, the competitive ratio
reaches 1. �

VII. SIMULATION

In this section, we conduct simulations to evaluate the perfor-
mance of our proposed offline and online algorithms, ASSUME
and ASSUME-online, respectively.

A. Simulation Settings

According to our real-world flight tests, we set the
power-speed function p(v) to be p(v) = 0.07v3 + 0.0391v2 −
13.196v + 390.95, where v# and v∗ can be easily calculated
as v# = 7.74m/s and v∗ = 13.99m/s. In addition, we as-
sume that the correlation coefficient of altitude change costs
is 389.15 J/m [8] and the regulated minimum altitude Hmin is
50 m. For the parameters of the communication transmission
model, we adopt the same setting as described in the work
of [21]. In this simulation, we focus on studying the impact of
the following key parameters: the number of GNs, the average
distance between adjacent GNs, the average allowable altitude of
transmission model, the allowable flight altitude of the UAV, the
average ratio of the transmission rang and time required for data
transmission, the granularity of altitude discretization, and the
online control data transmission range, which are abbreviated as
n, avgDis, avgAlt, maxAlt, avgDis-τ -ratio, δ, and crange,
respectively. To evaluate the impact of these parameters on
algorithm performance, we adopt a univariate approach, altering
the value of one parameter while maintaining the others at their
default settings. For the sake of demonstration, the default values
and varying ranges of each parameter are listed in Table III. For
every parameter setting in our simulation, we randomly generate
100 instances of GNs and use the mean results for comparisons.

B. Baseline Algorithms

We compare our proposed algorithms with the following
modified baseline algorithms:
� MSMO [47]: This approach adopts an iteration-based

heuristic strategy for speed scheduling. During the t-
th iteration, the UAV’s speed is updated using the for-
mula: vt = vt−1 +R1(v

∗ − vt−1) +R2(1−A)(vmax −
vmin), where R1 and R2 are random numbers. The second
term guides the population towards the optimal solution,
while the third term introduces random perturbations to
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Fig. 11. Algorithm performance comparisons in UAV energy consumption. In (a), as more GNs are deployed, the energy consumption of the UAV increases across
all methods. In (b), as the distance between adjacent GNs increases, the energy consumption under all methods also increases significantly across all methods. As
shown in (c), there is a slight decrease in energy consumption as the average altitude grows across all methods. The results presented in (d) similarly show a slight
decrease in energy consumption as the maximum allowable altitude grows across all methods. The results in (e) imply that as the average ratio increases, energy
consumption shows a decreasing tendency across all methods. In (f), as the granularity increases, the energy consumption also increases across all methods. Our
offline algorithm ASSUME saves an average of 26.1%–62.7% energy compared to the baseline methods, and the performance gap between the online algorithm
and the offline optimal is 22.8%.

prevent getting trapped in local optima. This process is
repeated at each possible altitude, and the altitude with the
lowest energy consumption is selected.

� bi-ACO [32]: This approach uses fi−max(si,fi−1)
τi

to
calculate the UAV’s speed over each gi, where fi −
max(si, fi−1) is the effective transmission range of gi and
τi is the time required for data transmission. Then this
approach incorporates an ACO strategy to optimize the
altitude scheduling through feasible generation, solution
division and pheromone update methods.

� noSpeedAltitude: Similarly, this approach calculates the
UAV’s speed using fi−max(si,fi−1)

τi
for all gi, while the

flight altitude is determined using a greedy method: for
each feasible altitude, we calculate the total transmission
range of all GNs and select the altitude that yields the
largest transmission range.

C. Results and Discussion

1) Overall Performance of Proposed Algorithms: Fig. 11
illustrates the performance of our proposed algorithms, AS-
SUME and ASSUME-online, against baseline algorithms across
various parameter settings. In Fig. 11(a), we compare the energy
consumption of different methods as the number of GNs in a
straight line increases. As expected, energy consumption rises
for all methods with more GNs deployed. Fig. 11(b) shows that
increasing the distance between adjacent GNs also significantly

increases energy consumption across all methods, as this leads
to a longer total flight distance. As shown in Fig. 11(c), we reset
the average altitude of the transmission model from 80 m to
130 m with a 10 m increment. The results suggest that there is
a slight decrease in energy consumption as the average altitude
grows across all methods. In Fig. 11(d), we vary the maximum
altitude of the UAV allowed to fly from 75 m to 125 m in a
10 m step. The results similarly show a slight decrease in energy
consumption as the maximum allowable altitude grows across
all methods. This is because a higher flight altitude increases
the probability of achieving the optimal transmission range by
adjusting the altitude. As demonstrated in Fig. 11(e), we use
the average ratio of transmission range to the required time
for data collection to evaluate the performance of the methods.
These results imply that as the average ratio increases, energy
consumption shows a decreasing tendency across all methods.
The reason is that increasing the average ratio is equivalent
to shortening the average required time for data collection,
thereby reducing energy consumption. Fig. 11(f) evaluates the
algorithms by varying the discretization granularity of altitude.
The results indicate that increased granularity generally leads
to higher energy consumption across most methods. This is
because coarser granularity makes it less likely to adjust to the
most appropriate altitude to achieve the optimal transmission
range, resulting in higher energy consumption.

Summary: (1) Across all subfigures, our proposed offline
optimal algorithm, ASSUME, consistently exhibits the lowest
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Fig. 12. The performance on energy consumption of ASSUME-online across
varying control communication ranges and different numbers of GNs. As the
range increases, the energy consumption decreases under the same number of
GNs, thereby narrowing the gap with the offline results.

energy consumption, regardless of the settings. Quantitatively,
ASSUME outperforms MSMO, bi-ACO and noSpeedAltitude
by an average of 39.3%, 26.1% and 62.7% respectively. In
addition, when the control communication range is 450 m, the
performance gap between ASSUME and ASSUME-online is
22.8%, exceeding the theoretical lower bound of 1 + 2 ΔHη

crange
≈

174 in this simulation setting. (2)MSMO employs a random
search strategy to determine the optimal speed, which is less
effective than our proposed speed scheduling method, looking
before crossing. In contrast, bi-ACO uses a heuristic approach
for scheduling UAV flight altitude, with performance heavily
reliant on parameter settings, such as the distance function,
making it difficult to achieve the optimal solution like ASSUME.
Meanwhile, noSpeedAltitude lacks effective altitude and speed
scheduling, resulting in the highest energy consumption. There-
fore, ASSUME significantly enhances performance by integrat-
ing joint altitude and speed scheduling. These findings highlight
the strong performance and practical feasibility of both the
ASSUME and ASSUME-online algorithms.

2) Further Analysis of ASSUME-Online: We further conduct
a set of simulations to evaluate the impact of the control com-
munication ranges crange on the energy consumption of the
UAV. The results in Fig. 12 show a clear trend: under the same
numbers of GNs, an increase in crange leads to a reduction in
energy consumption, thereby narrowing the gap with the optimal
ASSUME. This is because a larger crange contain more GNs at
a time, reducing the frequency of dynamic changes in flight
strategy. Notably, when crange = 450 m, the ASSUME-online
achieves the performance of ASSUME on average of 89.9%.

To ensure the feasibility of ASSUME-online in practice, we
also analyze its running time by counting the running times
of ASSUME, as shown in Fig. 13. The results show that the
offline running counts of ASSUME-online increase with large n
increases for a fixed crange, while they decrease with a larger
crange at a fixed n. Since ASSUME serves as a subroutine for
ASSUME-online, we establish its running time based on the
number of GNs, n, as a baseline. As anticipated, a larger crange
improve performance by including more GNs. Although the
running time for a single execution of ASSUME increases, it

Fig. 13. The performance on offline running counts of ASSUME-online across
varying control communication ranges and different numbers of GNs. As the
number of GNs increases, the offline running time and the offline running counts
of ASSUME-online increase, while as the range increases, the offline running
counts decrease.

Fig. 14. The efficient scheduling of ASSUME for data collection in real-world
scenario.

remains under 4.2 s, and the overall running count decreases,
effectively offsetting the computational cost–an acceptable out-
come for most practical applications.

D. ASSUME Algorithm for Real Scenario

To better reflect the effectiveness of ASSUME in real sce-
narios, we conduct simulation using a real-world dataset [60].
This dataset contains daily readings from various types of water
sensors, such as river gauge sensors, pluviometer sensors, and
aquifer piezometer sensors, placed around Catalonia in Spain.
Based on the dataset, first, we filter and extract key infor-
mation, including locations and types of sensors, the minimal
time required for data transmission, and the transmission model
corresponding to each type of sensor. We assume that an agile
and flexible UAV is employed to collect sensed data from these
sensors. Then we exploit our ASSUME algorithm to generate
efficient energy scheduling for both altitude and speed of the
UAV. As depicted in Fig. 14, we select seven representative
sensors distributed along the Ebro River, denoted as g1, . . . , g7
in their longitude order. Although the flight path from g1 to g7 is
not a perfectly straight line, we can logically stretch it without
influencing the results. Eventually, the scheduling results show,
for example, that to collect data from g7, the UAV needs to
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accelerate from the previous speed of 4.50 m/s to 9.58 m/s and
slightly ascend from the previous altitude of 50 m to 55 m.

E. Limitations and Future Research Directions

Limitations: From the above simulation results, while the
ASSUME algorithm demonstrates significant performance im-
provements in data collection missions, several limitations
should be acknowledged. First, our current implementation is re-
stricted to linear GN deployments, which may not fully represent
all real-world scenarios. However, this design choice enables de-
terministic and efficient UAV-assisted data collection scheduling
for many practical applications. Second, ASSUME performs
well in specific applications that depend on completely known
parameters, making it less effective in dynamic environments
where GN information may be incomplete or change over time.
Nonetheless, our core problem formulation and optimization
approach offer a solid theoretical foundation for future research.
Lastly, although ASSUME produces the optimal solution with
polynomial complexity, its performance may decline in very
large networks or under dynamic conditions. We can mitigate
this issue by adjusting the granularity of altitude discretization
and implementing efficient proactive pruning strategies, which
will reduce the computational overhead to a tractable level.

Future Research Directions: Looking forward, we envision
several potential extensions to our work. First, a natural research
direction would be adapting this algorithm to handle non-linear
GN deployments and dynamic path planning like more complex
intelligent transportation systems [61], [62]. Second, we will
consider a more challenging scenario with mobile and changing
GNs information, including node failures and imprecise trans-
mission models due to real-world channel variations. Lastly,
we will integrate our online algorithm to a real-time decision-
making system to handle dynamic flight replanning, enabling
more flexible and resilient operations in complex and unknown
environments. These future works demonstrate how our current
algorithm, while focused on a specific use case, provides a solid
foundation for border applications in UAV flight scheduling
optimization.

VIII. CONCLUSION

This paper investigates the UASS-GTS problem, where a
UAV collects data from GNs deployed along a straight line
with minimizing energy consumption. Unlike existing works,
we focus on flight altitude and speed scheduling, i.e., control
the altitude and speed of the UAV to save energy. In this paper,
we adopt a general communication model of GN and a practical
speed-related energy model based on our real-world flight tests.
This energy model is distinct from most existing works in the
literature on wireless communication, which typically assume a
distance-related or duration-related energy model. We develop
a novel looking before crossing algorithm on the time-distance
diagram to schedule speed for a basic case. By extending this
solution, we propose an optimal algorithm, ASSUME, for the
general UASS-GTS problem by incorporating altitude schedul-
ing through a dynamic programming method. Additionally, we
present a heuristic based on the offline algorithm to address the

online scenarios where the GN information is unavailable in ad-
vance. Simulations indicate that the ASSUME algorithm saves
an average of 48.85%–62.7% energy compared to the baseline
methods, and the performance gap between the online algorithm
and the offline optimal is merely 22.8%. This study on the practi-
cal UAV flight energy model and altitude-speed scheduling not
only offers practical guidelines for UAV-aided data collection
in real-world scenarios, e.g., power line inspection, power grid
monitoring, and border public safety patrol, but also has a the-
oretical contribution to the UAV flight scheduling optimization.
Our future work will extend the proposed algorithm to more
complex scenarios, e.g., non-linear GN deployments, mobile
GNs, dynamic flight planning, and multi-UAV systems.
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