RESCUE: Opportunistic Online Scheduling of
Model Retraining on Underutilized Edges

Jianping Huang!*, Xiang Liu'?*, Feng Shan®'

1 Southeast University, China

2 The Chinese University of Hong Kong, Hong Kong

Email: {jphuang, xiangliu, shanfeng}@seu.edu.cn

Abstract—The proliferation of Artificial Intelligence (AI) ap-
plications on edge devices requires frequent edge-assisted model
retraining to mitigate data drift. This creates significant resource
contention on edge servers, exacerbated by pre-committed high-
priority reserved tasks. Instead of investing in costly dedicated
servers, we identify a key and overlooked opportunity lying in
Underutilized Edge Computing (UEC) resources, which arise
from the over-provisioning and fragmentation of these reserved
tasks. However, existing scheduling paradigms, designed for
dedicated resources, are ineffective at leveraging transient and
fragmented UEC environment. To bridge this gap, we introduce
RESCUE, a novel online framework that unlocks the UEC’s value
for opportunistic retraining. RESCUE enables real-time decision-
making under uncertainties in task arrival and retraining dura-
tion. It facilitates heterogeneous resource-task assignments and
co-schedules reserved tasks to maximize expected profit. We for-
mulate this challenge as a stochastic joint-optimization problem
and propose a two-stage approach: the offline stage establishes an
optimal benchmark and value functions, while the online stage
uses this guidance to make irrevocable scheduling decisions in an
uncertain environment. We prove RESCUE achieves a competitive
ratio of 1/2. Extensive simulations consistently yield a high
empirical competitive ratio between 0.51-0.87, and an average
profit increase of over 60% compared to baseline methods. These
results indicate RESCUE’s robustness and scalability, establishing
its effectiveness for real-world edge systems.

I. INTRODUCTION

The widespread adoption of Artificial Intelligence (AI)
on edge devices has enabled many applications, including
augmented reality [1], autonomous driving [2], and intelligent
video analytics [3]. However, these deployed models, often
compressed with fewer parameters [4], are vulnerable to
performance degradation due to shifts in real-world data distri-
butions, a phenomenon known as data drift [5]. For instance,
intelligent video analytics [6], [7], used in street cameras and
smart cars, face diverse scenes over time, like variations in
lighting, weather, and crowd densities. To maintain accuracy,
edge-assisted model retraining offers a promising solution with
low latency and enhanced data privacy [3], [8], as devices can
send new data to nearby servers for retraining.

Yet, rising retraining demands create intense contention on
limited edge resources, a situation worsened by pre-committed
and high-priority reserved tasks, such as lightweight backend
computations or periodic data processing [9]. Unlike prior
work [6], [10], which relies on costly dedicated retraining
servers that incur high hardware, maintenance, and centralized

* Equal contribution. T Corresponding author.

Utilization

System resource
~

¥

e i
p— “Tlme

7

-/
Reservation overlap

—e— UEC Capacity Ratio

+ (2 = Opportunity from UEC

10 70

20 30 a0 50 60
Reserved Task Over-provisioning Ratio (%)

Number of UEC Fragments

Number of Fragments UEC Ratio (%)

510 ESE

- 5 20 25 30
Reserved window Number of Reserved Tasks

Fig. 1. Opportunity from UEC. (Left Panel) UEC is the dynamic gap
between statically reserved system resources (blue dashed line) and their
actual, often lower, loads (orange line). This gap stems from two primary
sources: @ over-provisioning to ensure QoS for individual tasks, and @
fragmentation, where idle slots between reservations become too small to
be individually useful. Collectively, they form a volatile yet valuable pool
of resources. (Right Panel) Our empirical analysis confirms the scale and
complexity of UEC. The top plot shows that UEC capacity can reach 30%
of total resources with only 10% over-provisioning. The bottom plot reveals
that this capacity becomes increasingly fragmented as the system hosts more
tasks, complicating its effective utilization.

communication overheads [11], as well as contribute to carbon
footprint [12], we identify a critical and overlooked opportu-
nity: a considerable portion of existing edge server capacity
remains chronically underutilized, referred to as Underutilized
Edge Computing (UEC).

As depicted in Fig. 1, UEC resources mainly arise from
two factors. First (®), to ensure quality of service (QoS)
for reserved tasks, resources are over-provisioned to potential
peak loads, particularly under fixed reservation policies [13].
This often exceeds routine resource demands, thereby causing
UEC gaps. While auto-scaling [14], [15] and overbooking [16]
mitigate this, they either react slowly to dynamic UEC or risk
pre-committed reserved task performance [17]. Second (@),
resource fragmentation creates UEC gaps from varying task
demands and static scheduling, which is hard to aggregate
for new tasks even if the total idle capacity is adequate. Such
resource underutilization is a significant economic burden even
in mature cloud ecosystems [18], [19], where waste rates can
reach one-third [20]. Our empirical simulations (right part of
Fig. 1) reveal that in edges, the UEC ratio can achieve about
30% even with a 10% over-provisioning ratio of reserved
tasks; furthermore, resource fragmentation escalates rapidly
with the rise in reserved tasks. Edges suffer even higher waste
than clouds due to their inherently volatile and heterogeneous
resources. Thus, repurposing UEC for model retraining can
reduce waste, cut costs, and boost edge efficiency and sus-

tainability, which highlights the need for efficient resource
allocation in scalable edge intelligence.

However, current paradigms fail to effectively utilize UEC
resources for model retraining. First, both general-purpose
resource schedulers [14], [15], [21] and specialized retraining
schedulers [8], [11] are built on dedicated resources, which are
by design incompatible with transient and fragmented UEC
slots. This limitation results in ineffective gap-filling [22] and
scheduling failures. Second, much current research focuses on
technical trade-offs, such as balancing performance between
inference and retraining [23], [24], or managing model evolu-
tion [3], [25]. These goals, while relevant in resource-abundant
environments, overlook the value optimization in UEC, which
may waste resources on low-profit tasks. Importantly, most
solutions are heuristic-based [6], [25], lacking theoretical
performance guarantees for reliable real-time decision-making
under uncertainties of task arrival and retraining duration.

Motivated by this, we aim to design an online scheduling
framework that maximizes the total expected profit from model
retraining tasks, by opportunistically exploiting these UEC re-
sources. Addressing this problem presents several challenges:

e Making real-time and irrevocable scheduling decisions
for dynamically arriving tasks, poses challenges due to
limited knowledge of future arrivals, stochastic retraining
durations, and fluctuating UEC availability. It must bal-
ance the immediate profit from current tasks against the
uncertain but potentially larger value of future tasks. This
classic dilemma often leads to the failure of simplistic,
short-sighted strategies.

o Assigning the most suitable resource for each retraining
task is crucial for effective UEC utilization. However, this
is complicated by server heterogeneity, which presents
varying capacities, and the diverse task requirements,
such as delay constraints [24] and accuracy gains [25].
Suboptimal assignments waste valuable UEC resources
and may negatively block future opportunities.

o Scheduling opportunistic retraining tasks directly coupled
with the allocation for high-priority reserved tasks, which
have specific and pre-committed resource guarantees. The
core challenge is to design a unified framework that co-
schedules both task types, not just to meet the demands
for reserved tasks, but to strategically shape UEC slots
for retraining tasks to maximize the total system profit.

To address these challenges, we introduce a novel frame-
work for opportunistic online scheduling of model retraining
on underutilized edges, which we call RESCUE (REtraining
SCheduling on Underutilized Edges). Specifically, rather than
reactive gap-filling [22], RESCUE employs a proactive UEC
resource shaping, functioning in a two-stage manner: First,
the offline stage formulates the scheduling as a stochastic
optimization that models both high-priority reserved tasks and
opportunistic retraining tasks. By solving the linear program-
ming (LP) relaxation of this problem, RESCUE establishes an
optimal benchmark and critical value functions that estimate
the future profit of resources. Second, guided by these offline

values, RESCUE online assigns each arriving retraining task
to an appropriate server-service profile pairs (SSPs), where
service profile sets the retraining duration. It compares the im-
mediate profit of accepting the task against the long-term value
of reserving resources for potentially more valuable future
tasks, thereby navigating trade-offs in online scheduling under
uncertainty. Our contributions are summarized as follows:

e We are the first to formulate the problem of maximizing
profit from online model retraining as a stochastic joint-
optimization problem, which co-schedules opportunistic
retraining tasks within UEC resources created by high-
priority reserved tasks. This unified model addresses a
key limitation of prior works, which typically assume
dedicated resource pools and fail to systematically trans-
form wasted UEC resources into valuable opportunities.

e We design RESCUE, a novel online scheduling frame-
work, which includes: (1) The offline stage solves an
LP relaxation and calculates value functions that price
future resource availability; (2) The online stage then
uses the offline guidance to make irrevocable scheduling
decisions, achieving a provable 1/2-competitive ratio.

o We conduct extensive experiment evaluations on realistic
workloads, showcasing that RESCUE maintains a high
empirical competitive ratio of 0.51-0.87 against the of-
fline LP-based upper bound, while achieving an average
profit increase of over 60% compared to the baselines.

The remaining part of this paper is organized as follows.
Related work is described in Section II. The system model
is presented in Section IIl. Then we propose our online
framework in Section IV and theoretical analysis in Section V.
The experimental results are reported in Section VI. The work
is concluded in Section VIIL

II. RELATED WORK
A. Online Scheduling for Edge-based Model Retraining

The need to address data drift has made online model
retraining essential in edge Al applications [3], [8]. As the
number of retraining tasks increases, effective scheduling
of these tasks becomes crucial; thereby, a significant body
of research optimizes this scheduling process. For instance,
some work design systems for balancing resources between
inference and retraining [6], [23], and other work [25], [26]
integrates model retraining into complex workflows, maximiz-
ing model accuracy and meeting delay constraints.

Although these studies enhance edge intelligence, they often
rely on simplifying assumptions. First, they tend to model
a dedicated and non-interfering resource pool for schedul-
ing [6], [23], neglecting the fragmented and transient resource
gaps created by pre-committed and high-priority reserved
tasks. Second, many assume fixed or predictable retraining
durations [8], [11], failing to schedule tasks with dynamic
edge resources and stochastic execution times in practical
scenarios. Motivated by this, we aim to develop an online
scheduler that directly addresses dynamic resource availability
and uncertainties in task arrival and retraining duration.

On-device inference
——————————————— data

@ - gl
| Drit detector & sampler| ——>8 " Data receiver | — =~_Cb

%ty & _pa
2}— \l/@ Task arrival
o
s S

h ~1
& 8 x [Task scheduler | {Go/der model
@ Model update \L@ Task assignment
! Online Scheduling Decision (xiy(£), Yjra(t))

Utilization

Utilization

<
® Model retraining
ssP (k,I)

7| Time

[uec Reserved tasks ~ /

Fig. 2. System model and workflow.

B. Resource-aware Task Scheduling

To enhance system resource utilization, existing task sched-
ulers use various advanced methods. Proactive strategies,
like overbooking [16], enable resource bookings to exceed
supply; resource profiling [21] establishes optimal resource
ratio profiles; and contention-aware allocation [27] optimizes
task placement to avoid resource contention. While reactive
approaches adjust allocation based on demand fluctuations
through auto-scaling [14], [15], fill idle gaps with small tasks
using backfilling [22], and estimate resource-performance
mappings via online feedback schemes [28].

However, these solutions are not suitable for the UEC
scenario. First, they often lack fine-grained mechanisms to
proactively exploit UEC resources while maintaining the per-
formance of reserved tasks. Second, their objectives misalign
with our profit-driven context, neglecting the characteristics
of retraining tasks, such as delay sensitivity [24] and variable
accuracy gains [25]. Moreover, many approaches rely on
heuristics without offering theoretical performance guarantees,
limiting their applicability in real-time decision-making, and
highlighting the need for a provably optimal online framework.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Overview

We consider an edge computing system, as illustrated in
Fig. 2, which mainly comprises a set of devices J =
{1,2,---,J}, a set of edge servers K = {1,2,--- | K}, and a
central online task scheduler. The system operates over a time
horizon 7 = {1,2,--- , T}, divided into T time slots.

System Workflow. The system operates in a four-step cycle:
@ Task Arrival. Upon detecting data drift, a device triggers
a retraining task with sampled data and pseudo-labels from
a golden model. @ Task Assignment. The central scheduler
receives the task and decides whether to accept it. If accepted,
it assigns the task to an optimal edge server with a retraining
profile, which we later define as a server-service profile pair.
@ Model Retraining. The assigned server performs retraining
using the selected profile, opportunistically leveraging UEC
resources without interfering with high-priority reserved tasks.
@ Model Update. Upon completion, the updated model is
deployed back to the device for enhanced inference.

Online Arriving Retraining Tasks. As introduced in the
workflow, retraining tasks are triggered on the device side.
Specifically, each device 5 € J is equipped with a specific
compressed DNN model for inference, which may suffer from
performance degradation due to data drift. To counteract this
issue, each device runs an adaptive data drift detector and
a drift-aware data sampling module [3]. When the inference
accuracy of the model is detected to fall below a threshold,
the device triggers a retraining task r; with selected new data
samples ¢; to enhance model accuracy. Task r; arrives at
the online scheduler at time ¢ following a known adversarial
distribution (KAD) [29], [30], represented by {{pj(t)}j}t. It
is well-grounded in practice that the time-varying task arrival
probability can be estimated from historical logs reflecting
foreseeable operational patterns [31]. While our framework
assumes stationarity for analysis, it can adapt to non-stationary
environments by periodically re-estimating probabilities in the
offline stage. In addition, a “golden model” is employed at the
edge, pre-trained on a large dataset for high accuracy. Due to
its high deployment cost on devices, the model is used only to
generate pseudo-labels for each incoming retraining task. [6].

UEC from Prioritized Reserved Tasks. On the edge side,
each server k € I has heterogeneous computing resources,
denoted as ci(t), measured in teraflops per time slot. The
edge environment is complicated by a set of high-priority
reserved tasks, denoted as H,, which are essential for business
operations like periodic data analytics and critical control
loops. Each reserved task ¢ € H; has a reserved window
[s¥,d¥] and a total computing demand ¢;;, which must be
satisfied. Typically, the resources available within a task’s
window exceed its demand, i.e., , gzﬁf < Zte[sﬁ,df‘] ck(t), a
common practice of over-provisioning that leads to resource
underutilization. This, along with fragmentation between task
windows, creates idle resources termed UEC. For flexible
scheduling, let x;;(t) be the fraction of ¢ (¢) allocated to
reserved task ¢ at ¢, allowing non-contiguous execution.

Retraining Service Profile and Scheduling. The online
scheduler confronts an irrevocable decision for each arriving
retraining task: whether to accept it and, if so, how to
schedule it. This assignment is formalized by selecting an
optimal server-service profile pair (SSP), (k,1), represented
by the binary variable y;x;(t). The server k is from set K,
while the service profile [is selected from an ordered set
L£ = {1,2,...,L} [6], [23]. Each profile | € L defines a
computational workload (e.g., a specific number of training
epochs), with a stochastic retraining duration d; . This duration
follows a known distribution D), affected by factors like
communication jitter and CPU/GPU scaling [32]. Critically,
higher-indexed profiles have longer expected durations, such
that if I’ < [, then E[d],] < E[d]]. Selecting a higher-indexed
profile may improve accuracy, but its prolonged use of UEC
resources risks blocking future tasks, and this decision must
ensure sufficient resources for high-priority reserved tasks.

Decision Variable. (1) z;(t): Represents the fraction of
server k’s capacity allocated to reserved task ¢ at time ¢. (2)
yiki(t): A binary variable where y;1;(t) = 1 indicates that r; is

assigned to SSP (k, 1) at arrival time ¢; otherwise, y;xi(t) = 0.

B. Profit Model

We quantify the benefit of scheduling a retraining task
by modeling its profit based on expected accuracy gains,
stochastic retraining duration, and system constraints.

Delay Model. In practice, to ensure the retraining quality
of service, retraining tasks are often constrained by a Service
Level Agreement (SLA) deadline, denoted as d,q,. We an-
alyze the end-to-end delay of the model training task, which
comprises data transmission over wireless networks and the
retraining process. Based on the Shannon formula, the trans-
mission rate between device j and edge server k at time ¢ is
modeled as 7 = By, log(1+0;95,/No), where g; represents
the transmission power of device 7, g;f-k is the channel gain
between device j and server k at time ¢, and Ny is the noise
power. The transmission delay thus for uploading data ¢; and
downloading the model ¢ is d%;, = (¢; + ¢})/rjx(t). This
results in a remaining time budget for model retraining, given
by dif = dmaz —d§- - Hence, profit from retraining is generated
only if the retraining duration satisfies d; < diz"

Accuracy Gain Model. We denote the accuracy gain of
each retraining task r; with an SSP (k,l) at time t as
Aaji(t), combining the model’s potential for improvement
and the gain from computational work. First, The potential for
improvement is quantified by an accuracy gap factor, denoted
as a;(t) = 1 —a;(t)/amaz, Where a;(t) is the current model
accuracy and o« iS the theoretical maximum achievable
accuracy. Here, the accuracy «;(t) decays over time since its
last update [33], captured by a;;(t) = a;(tg)e™ 7 (*=0) where
to is the last retraining timestamp and +; is the decay rate. This
factor reflects that a model with a lower current accuracy has a
greater potential to improve towards its maximum achievable
accuracy. Second, for a retraining duration d under profile [,
the computational work on server k starting at ¢ is given by
Ui (t,d) = Zt;:i_l ¢k (7). Then, a resource-to-performance
function F}[-] [34] is used to represent the accuracy gain
from computational work, typically exhibiting a non-linear
and concave form (e.g., F;[U] = a;log(l + b;U) detailed
in Section VI-A), showing practical diminishing returns [35].

Combining these components and considering the stochas-
tic retraining duration, we calculate the expected accuracy
gain E[Aa;ji(t)] by summing the gains from all possible
satisfied retraining durations, i.e, dj < dTT, weighted by
their probabilities following the known distribution D, as
E[Aaj(t)] = a;() 4, Pr(d] = d)F;[Uk(t,d)]. The ex-
pected profit R;x;(t) is then the weighted gain:

Rjri(t) = wiE[Aayn(t)], (D

where w; is a service prioritization factor of task r;. This
profit metric guides online decisions, linking accuracy gains
to economic incentives in UEC.

C. Problem Formulation

Our objective is to find an optimal scheduling policy for
both opportunistic retraining tasks, characterized by the vari-

ables {y;:(t)}, and pre-committed reserved tasks, denoted by
{zir(t)}. This policy aims to maximize the total expected
profit from retraining tasks, while ensuring that all high-
priority reserved tasks are completed within their specified
time windows and resource constraints. We formulate this
challenge as a stochastic integer program, termed Problem P1:

max Z P (O)yjra (t) Rjra (t)
t,j,k,1
st: Y ym(t) <1, Vi, (2a)
k,l
ZZ;}J Vi () Pr(d] >t —t +1)
gl <t
Expected fraction for retraining tasks
+ o D wa() <1 Ykt (@2b)
1€EH
—_———
Fraction for reserved tasks
yjkl(t) S {Oal}a Vj,k,l,t, (2C)
dy
> c®zin(t) = oF, ki, (2d)
t:Sf
0<au(t) <1, Vit (2e)
xik(t)zo7 Vk7zvt¢ [Sis 1] (2f)

Here, Eq. (2a) ensures each arriving task is assigned to only
one SSP. Eq. (2b) maintains that, for any server k at any
time ¢, the expected resources used by active retraining tasks,
along with those allocated to reserved tasks, do not exceed the
server’s total capacity. Eq. (2d) guarantees that each reserved
task receives its total required computational resources ¢F
within its designated time window, utilizing fractional resource
allocation. Finally, Egs. (2¢), (2e), (2f) define the domains of
our decision variables.

Problem Challenges. This formulation presents a challeng-
ing online stochastic integer program. The core difficulties
stem from: (1) Online Decision-Making under Uncertainty:
Decisions on binary variables y;x;(t) must be made irrevoca-
bly at time ¢ with limited foresight into future task arrivals and
stochastic retraining durations d;, which introduce uncertainty
in resource occupation constrained by SLA deadlines. (2) Tight
Temporal Coupling in Resource Constraints: Eq. (2b) imposes
a time-extended coupling among variables, where any assign-
ment ¥, () = 1 occupies resources over an uncertain future
interval, impacting the subsequent feasibility and optimality.
This structure makes myopic approaches highly suboptimal.

IV. RESCUE FRAMEWORK DESIGN

To tackle the challenges of Problem P1, we now propose
RESCUE, an online scheduling framework that bridges long-
term optimization with immediate but irrevocable decisions.
We first present its high-level design overview as follows.

A. Design Overview

The core of RESCUE is an LP-guided threshold-based
online scheduling algorithm that seamlessly integrates offline

Algorithm 1: RESCUE Framework

Input: {p;(t)},K,TJ,L, T
// Offline Planning Stage
1 Calculate {R;w:(t)}, Vj, k, 1, ¢ by Eq. (1);
2 y* < Solve(P1-LP);
3 Calculate {A;xi ()}, {Bw(t)} by Algorithm 2;
// Online Decision Stage
4 fort< 11t T do
5 if task r; arrives at t then
6 Select an SSP (k, 1) with probability y7y, (t)/p;(t);
7 if Ajri(t) > Bk(t + 1) and k is available then
8 ‘ Assign r; on server k with profile [;

retraining reserved e vee [B

task arrival tasks
A A SN SR i
<—aq— 2
(5,8,9)

:
(4,69 tasks ﬁ;ﬁ. utilization +40%
:
:
EI:I t

¢y

\/
£
i
S

(0,3,6)

Fig. 3. An example of RESCUE. An edge server has committed resources to
three reserved tasks, e.g., task (0,3,6) needs resources of 6 between ¢ = 0
and t = 3, which creates a UEC environment. When a retraining task r;
arrives at t = 1, RESCUE uses its value functions to weigh the trade-off of
accepting it versus reserving resources for the future. By scheduling the new
task into the UEC gaps, it boosts overall system utilization by 40%.

planning with real-time decision-making. Specifically, it is
built upon a two-stage approach: (1) In the offline planning
stage, RESCUE solves the LP relaxation of the stochastic opti-
mization problem (termed P1-LP), which provides a provable
upper bound on the optimal solution of P1 and represents a
globally optimized long-term task scheduling. This solution is
then used to compute a set of value functions via Dynamic
Programming (DP), which estimate the future profitability
of various system states and decisions, This computation is
detailed in Algorithm 2. (2) In the online decision stage,
RESCUE operates with limited foresight into future arrivals.
For each incoming task, it first leverages the offline optimal
value with probability to select a promising SSP candidate.
Then, it applies the value functions to decide whether to accept
the task with this SSP or reserve resources for potentially
higher-value future opportunities. This online procedure is
outlined in Algorithm 1, with Fig. 3 illustrating a toy example
of the key concepts behind RESCUE.

Remark. Our framework strategically decouples the of-
fline planning (i.e., LP and DP) from the highly efficient
online execution. While the offline phase has polynomial-time
complexity, scaling with the size of J,/C, L, T, its structure
allows for standard decomposition techniques, such as column
generation [36], to handle large-scale instances. The resulting
policy is then employed in the online stage, where decisions
are made with minimal complexity, involving only a lookup
and comparison and spreading heavy computation costs across
numerous rapid, real-time scheduling decisions.

B. Offline Optimal Value

Given a problem instance, a sequence of online retrain-
ing tasks follows the arrival probability distribution Z. An
offline algorithm, with complete knowledge of the task ar-
rival sequence, can calculate the maximum profit for any
I. The expected profit over the distribution Z, denoted as
E;~z[OPT(I)], provides the theoretical upper bound for any
online algorithm’s performance, which corresponds to the
optimal solution of the stochastic integer program P1.

Due to the complexity of P1, we formulate the LP relaxation
of P1, denoted as P1-LP, to establish a computable benchmark.
In P1-LP, the binary decision variable y,;(t) is relaxed to
be a fractional value in [0, 1], which also represents the joint
probability that task r; arrives at time t and is assigned to
SSP (k,l). The variable x;;(t) remains fractional as defined
in P1. The resulting P1-LP formulation is as follows:

(PI-LP) max » yju(t)Rjw(t)
t,j,k,l
Zym) <pi(t), Vit (3a)
ZZ@/W YPr(df >t —t' +1)
G t<t
+ > wa(t) <1, Ykt (b
1€EH
yjkl(t) Z 07 V]v k; lvt; (SC)
Eqgs. (2d) — (2f).

Eq. (3a) ensures that the total assignment probability of a task
does not exceed its arrival probability, and the other constraints
directly mirror those in P1.

Remark. We use OPT(LP) to denote the optimal value
of PI-LP, defined by a pair of decisions (z*,y*), where
x* = {x}.(t)} is the optimal fractional allocation for reserved
tasks, shaping the UEC resource view, and y* = {y};,(t)} is
the optimal probabilistic policy for accepting retraining tasks
within this UEC. Based on Eq. (3b), y* inherently captures the
resource trade-offs imposed by z*. This enables us to utilize
y* as a reliable guide for real-time decision-making.

Lemma 1. OPT(LP) > E;..z[OPT(I)).

Proof Sketch. The proof is based on showing that any feasible
solution to the stochastic integer program P1 can be converted
into a feasible solution for its LP relaxation, P1-LP, with an
identical objective value. Let (z*,y*) be an optimal solution
for P1, and set Z;(t) = x3(t), Yjm(t) = pj()yin(t),
which directly aligns with the probabilistic definitions of the
variables. It can be verified that (Z,y) is feasible for P1-LP.
For example, >, , ¥;i(t) < p;(t) in PI-LP holds because
> k1Y (t) < 1in P1. The other constraints are satisfied due
to the structural similarities between the two problems. Finally,
the objective value in PI-LP is 37, ., Yjm(t) Rj(t) =
>tk Pi (Y5 (£) Rk (t), which is exactly the optimal value
of P1. Since a feasible solution for P1-LP that achieves the
optimal value of P1, i.e., OPT(LP) > E;.z[OPT(I)]. O

Algorithm 2: Activation-Baseline Computation (ABC)

Input: y*, {R;(t)}
1 for j€e 7, ke K,le L do
2 | Calculate Ajxi(T) and Bi(T) by Eq. (6);
3fort< T —11t 1do
4 for j € 7, ke K,le L do
5 | Calculate Ajx(t) by Eq. (4);
6 Calculate By (t) by Eq. (5);
Output: {A;ri (1)}, {Be(t)}

C. Offline Value Function Computation

To translate the offline optimal insight from P1-LP into an
effective online policy, we employ DP to pre-compute two
key value functions, as detailed in Algorithm 2. These func-
tions address the core challenges of uncertainty and temporal
resource coupling, as discussed in Problem Challenges of
P1. They quantify the trade-off between the expected profit
of immediate actions and the strategic value of reserving
resources for future opportunities, enabling online algorithms
to make proactive and farsighted decisions.

Specifically, the activation function Ajj(t) quantifies the
total expected profit from accepting task r; with SSP (k,1)
at time ¢. It combines the immediate profit R,z (t) with the
expected future value of server k after the task’s completion.
Importantly, it considers the stochastic retraining duration dj
to embed future uncertainty into the present decision:

—|—ZP7‘ (d] =

Here, By (t) is the baseline function, which represents the
maximum expected profit achievable from server k£ from time
t onwards, assuming no new retraining task is scheduled.
This function reflects the “value of waiting” by reserving the
server’s capacity for future opportunities. Guided by the offline
probabilities y*, it recursively computes this value by weighing
the option of accepting a new task against the benefits of
waiting, thus capturing the temporal coupling where each
decision influences future resource availability:

t%=§:th®HMXL%m@%BAt+1H

Zyjkz

These functions are Computed via backward induction from
the horizon T down to 1. At ¢t = T, we have:

Aj(T) = R (T), Vi, k, 1,
By(T) = Zj,l y;kl(T)Rjkl(T)v VEk.

Afterward, for each k € K,l € L,j € J,t € T, we fill in
A (t) and By (t) recursively with Egs. (4) and (5).

.Ajkl(t gkl d)Bg(t + d). 4)

)Bi(t +1). ®)

(6)

D. Online Scheduling and Decision-Making

The online phase of RESCUE is executed upon the arrival of
a retraining task 7; at time ¢. The decision process is twofold:

(1) Instead of a brute-force search of SSPs, the algorithm
leverages the offline optimal y* to probabilistically identify
a promising SSP. Using a form of randomized rounding [37],
it selects SSP (k,!) with a probability of y7,,(¢)/p;(t). This
step ensures that choices align with the globally-aware and
long-term strategy derived from the LP relaxation. (2) For
the selected SSP (k,1), it performs a threshold-based check
by comparing A;j;(t) (the profit from accepting the task)
against B (t + 1) (the profit from reserving the server for the
future). A task is accepted only if the server k is available and
Ajri(t) > Bi(t+1). Otherwise, the task is rejected, preserving
resources for potential future tasks. When task r; is assigned
to an SSP (k,1), server k becomes blocked for a stochastic
duration dj ~ D; of profile [.

According to the definition of By (t) and Algorithm 1, we
have the following observation.

Observation 1. By (t) is computed via backward induction,
where By, (T+1) £ 0. This recursive calculation allows By, (1)
to capture the maximum value achievable on server k over
the entire horizon, effectively reflecting the opportunity cost of
utilizing its resources from the beginning.

V. THEORETICAL ANALYSIS

In this section, we first construct an auxiliary instance to
derive performance bounds in Lemmas 2 and 3. Then, we
prove that RESCUE achieves a tight competitive ratio of 1/2
against the optimal offline solution in Theorems 1 and 2.

A. Auxiliary Instance

For each server, we define an independent auxiliary instance
by assuming the arrival of synthetic tasks, aggregating tasks
for each service profile, which is non-repeating in service
profile [€ L. At each time ¢, a synthetic task 7}, arrives
with probability pj,(t) and yields a profit of Rj,(t), which
are derived from the optimal solution y* of P1-LP:

Zyjkl Zyjkl Rjp(t

The task 7, can only be scheduled on server k with profile
[at time ¢. Similarly, we define an activation function A (t)
and a baseline function Bk() for this auxiliary instance:

Auat) = Riy(t) + g={ Pr(dj = d)By(t +d),
By(t) = > P (t) max{ Ay (t), B(t + 1)}
L= 32 Pha(8)Bi(t + 1)

Note that we set By (t) = 0 for ¢t > T'. Since Dier Pr(t) <
>iaYim() < >2;pi(t) < 1, the probabilities are valid,

Pt P (t @)

®)

making the auxiliary instance well defined.

B. Competitive Analysis

Now we present the two key lemmas that connect the P1
problem, the auxiliary instance, and the offline optimal value.

Lemma 2. Vk € K,Vt € T, we have By(t) > By(t).

Proof. We prove this lemma by backward induction on ¢.

Base Case ({ = T). The property holds with equality.
By their definitions, both By (T) and Bj(T) simplify to
2251 Yk (T)Rjr(T), since future profits beyond 7" are 0.

Induction Step. Assume that By(t') > By(t'). V' > t,
E[Bi(t +d})] > E[Bi(t +dy)]. By applying Eq. (5), we have

> Z max{z y]kl
(1- Zpkl Bi(t+1)
1
> pla(t) max{ Ay (1), By(t + 1)}
1

+ (1= ph)Be(t + 1)
l

where the last inequality holds because the aggregated activa-
tion value is larger, i.e, >, yiAjk > pjyAw and from the
induction hypothesis By (t + 1) > By (t + 1). O

), D () Br(t + 1)}

jkl

= By (t), ©)

Lemma 3. Bi(1) > 13, 250 Yk () Rk (1)

Proof Sketch. The proof relies on a primal-dual analysis.
According to Eq. (8), we have By (t) > max{B; (t+1), By (t+
1) 4+ 3>, P () (Agi(t) — Br(t +1)). Then, such By (t) can be
formulated as an LP problem to find the minimum value of
l’;’k(l) subject to the recursive constraints. By the principle of
weak duality, the objective value of any feasible solution to the
corresponding dual LP provides a lower bound on the optimal
primal value. We associate dual variables, Ax(t) > 0 and
ur(t) > 0, interpreted as “shadow prices”, with each primal
constraint. Here, \;(t) corresponds to By (t) > Bi(t + 1)
and represents the marginal value of maintaining this non-
increasing property of the baseline function. y () corresponds
to Bi(t) > Br(t+ 1) + >, i (t)(Awi(t) — Br(t + 1)) and
signifies the importance or marginal value of the expected
profit achievable at time ¢. Then, the objective of the dual
LP is to maximize Y23, ju(£) (32, Pl () Ry (1)).

The core of our proof is to construct such a feasible dual
solution by setting the dual variables pg(t) = 1/2 for all
t € [1,T)]. With this assignment, the remaining dual variables,
Ak (), can be recursively set to satisfy all dual constraints. Sub-
stituting our feasible solution (i.e., u(t) = 1/2) into the dual
objective function directly yields the lower bound: B (1) >

St s PR (1) = 150, 3 i (O R (). O

Definition 1 (Competitive Ratio). Let ALG(I) be the expected
profit of an online algorithm ALG when the input sequence

is I. We say that an online algorithm is c-competitive if
E[NI[ALG(I)] Z C- E[NI[OPT(I)],VI

Theorem 1. RESCUE can achieve a 1/2-competitive ratio
against the offline optimal solution.

Proof. Let Er.z[ALG(I)] be the total expected profit from
RESCUE. The expected profit of the offline optimal algorithm,
E;~z[OPT(I)], is proved to be upper-bounded by the optimal

[}
o O

o

" o contrast (sampled)
Profiling in contrast (a=1.54e+01, b=4.15e-06)
o fog (sampled)
—— Profiling in fog (a=1.55e+01, b=2.50e-06)

0 5 10 15 1e6
MACs Consumed (M)

N W B U
o o

Improvement Percent (%)
=
o

o

Fig. 4. Example of resource-to-performance profiling.

value of P1-LP in Lemma 1, i.e., OPT(LP) > E;.z[OPT(])].
Thus, combining Lemmas 2 and 3, we have:

E;z[ALG(I)] = Z Bi(1) > Z Bi(1
Z3 Z >yl

t 4.k,

1 1
= 5OPT(LP) = SE1.z[OPT(I)].

_]kl

(10)
O

Theorem 2. The 1/2-competitive ratio of RESCUE is tight.

Proof. We construct an instance: a single server over 1" = 2.
At t = 1, task r; arrives with profit Ry = 1. At ¢t = 2,
either task 7o with probability € and Ry = 1/¢, or task r3
with probability 1 — € and R3 = 0. Assume a single service
profile with a fixed duration of dj = 2, so accepting any task
occupies the server for the entire horizon.

An optimal offline algorithm, knowing the full arrival se-
quence in advance, would reject 71 to accept o (profit 1/¢)
when it appears, and would accept r; (profit 1) otherwise. Its
total expected profit is E[OPT] =¢-(1/e)+(1—€)-1 =2—e.
In contrast, any online algorithm must make an irrevocable
decision on ry at t = 1. If it accepts ry, its profit is
exactly 1. If it rejects ry, its expected profit from future
tasks is € - (1/e) + (1 — €) - 0 = 1. Thus, the maximum
expected profit for any online algorithm is max{1,1} = 1. The
resulting competitive ratio is E[ALG|/E[OPT] = 1/2 — €. As
€ — 0, this ratio approaches 1/2, which shows that no online
algorithm can achieve a better competitive ratio. O

VI. EXPERIMENT EVALUATIONS
A. Evaluation Settings

System Setup. We configure our evaluation within [2, 7]
edge servers and [10, 18] devices. To model hardware hetero-
geneity, each server’s computational capacity, ci(t), ranges
from 5 to 10 tera MACs per time slot. Network parameters
are configured based on common models [13], [24], where
the wireless bandwidth is 3 MHz, the transmission power o
is 100 mW, the noise power Ny is —40 dBm, and the channel
gain g;- ;. 1s determined by a path loss model with device-server
distances randomly ranging from 0.15 to 0.45 km.

1le

501 301

RESCUE —— SRS

—— cvs

—— Rnd
12 LP Upper Bound

IS
S
2
)

S
o

f&fw

'

N

o
w
=)

N
o
N
)

Time Average Utilization (%)
Expected profit

Cumulative Expected Profit
LP Upper Bound

0 /-"'- “ Time Average Utiization

Cumulative Expected Profit
=
S

o

o

RESCUE —— SRS —— Rnd
—— cvs

RESCUE —— SRS —— Rnd

—— cvs 412 LP Upper Bound

112 LP Upper Bound

w

=)
N
)

N
o

Expected profit
Expected profit

"x
|
\
t
I
T
1

=
o

0 100 200 300 400
Time

500 6 12 18 24 30 36
Number of reserved tasks

Fig. 5. Overall Performance over time.

UEC and Reserved Tasks. To simulate different UEC
environments, we first set the number of total reserved tasks
to 6 to 36 dispersed in a given number of servers, and then
we also introduce two key factors: a density factor to manage
the total occupation ratio of reserved tasks within the range of
[10%, 60%)], and a demand factor to adjust the total computa-
tional requirement ratio from [5%, 30%)]. These factors create
UEC resources with diverse scales and fragmentation levels.

Online Retraining Tasks. To simulate task arrival proba-
bilities in practice, we account for fluctuations between day-
time and nighttime by setting the average arrival probability
within the range of [20%,70%)], modeled using a periodic
sinusoidal function. We assume the data amount uploaded to
and downloaded from edge-side randomly varies between 8—
32MB and 1-4MB, respectively. The average SLA deadline
varies from 18 to 28 time slots, while the profit weight is
randomly assigned within [0.5, 10] to reflect real-world varying
profits. In addition, we configure between 3-8 service profiles
(L), and the expected retraining duration for each profile
follows normal, bimodal, uniform, and heavy-tail distributions
to capture real-world server capacity uncertainties.

Dataset and Model Profiling. We use MobileNetV2 [4]
for compressed DNNs on devices and ResNet50 [38] as the
“golden model” on the edge side to generate pseudo-labels.
Our experiments focus on the CIFAR-10-C dataset [39], which
introduces 19 corruption types to the standard CIFAR-10 to
simulate data drift. To realistically estimate the retraining
profit, we perform empirical resource-to-performance profil-
ing [34]. We treat each corruption type as a distinct data
drift scenario and conduct extensive retraining experiments.
By adjusting the number of training epochs and measuring the
corresponding accuracy gain Acq, we vary the computational
work. This yields a set of empirical data points (U, Ac«) for
each drift type. Following [35], [40], which indicates dimin-
ishing returns on computational investment, we then apply a
non-negative least squares (NNLS) solver [41] to fit these data
points to the logarithmic function F;[U] = a;log(1 + b;U).
An example of the model profiling is illustrated in Fig. 4.

Baseline Algorithms. To evaluate RESCUE’s performance,
we compare it with these baselines. (1) PickConfigs [6]: When
a retraining task arrives, this algorithm greedily selects the SSP
that offers the highest immediate profit among all available
options, while ensuring all reserved tasks can be completed.
(2) SRS [26]: Upon task arrival, this algorithm selects the SSP
by ranking priority scores that consider both the expected

10 20 30 40

5 60 5
Reserved task density ratio (%)

10 15 20 25 30
Reserved task demand ratio (%)

Fig. 6. Expected profit under different reserved task number/density/demand.

profit and the expected completion retraining duration. (3)
Sumita [29]: This algorithm adopts a hybrid way. It first selects
the server based on the offline LP solution y*, similar to
RESCUE, but then greedily chooses the service profile that
yields the highest profit on that server. (4) Cost-Value Selection
(CVS): This algorithm selects the SSP based on the best cost-
value ratio, where cost is a function of resource consumption.
(5) Random (Rnd): This algorithm randomly decides whether
to accept an incoming task and, if accepted, randomly assigns
it to a valid SSP.

B. Results

Overall Performance over Time. We begin by illustrating
the real-time overall performance of RESCUE. As shown in
Fig. 5, the red curve, tracking the actual time-averaged UEC
utilization, which is an indicator of resource engagement,
quickly increases and stabilizes around 53%. This efficient
resource usage results in a near-linear profit accumulation,
as shown in the blue curve. Ultimately, this leads to a final
profit with an empirical competitive ratio of 0.64 against the
LP-derived upper bound, exceeding our theoretical guarantee
of 1/2. This validates that RESCUE’s core design, which
dynamically balances immediate gains with the future value of
resources as stated in Egs. (4) and (5), is effective in practice.

Robustness to Resource Fragmentation. A key challenge
in UEC environments is resource fragmentation. We evaluate
the robustness of our framework by varying the total demand
of reserved tasks, temporal density and spatial distribution, as
shown in Fig. 6. These results highlight a core strength of
RESCUE: while baseline performances often fluctuate and de-
cline significantly under high fragmentation, RESCUE exhibits
good resilience. Its performance advantage becomes increas-
ingly significant as the UEC resource grows more challenging.
As observed in the left part of Fig. 6, under high spatial
fragmentation, i.e., the number of tasks, RESCUE generates
over 84% more profit than the best-performing baseline. This
superiority stems from its LP-guided foresight, enabling it to
intelligently navigate a complex resource environment where
reactive and greedy baseline strategies inevitably fail.

Performance under Dynamic Loads and Temporal Con-
straints. We evaluate how algorithms adapt to system dy-
namics, focusing on varying system loads (via task arrival
probability, the left part of Fig. 7) and temporal flexibility
(via SLA deadlines, the right part of Fig. 7). Under increasing
load, RESCUE’s profit advantage widens, achieving 99% more

1e2 1e2

le2 1e2

RESCUE
—=— Sumita
PickConfigs

—— SRS —— Rnd
—— cvs 112LP Upper Bound

RESCUE
—=— Sumita
PickConfigs

—— SRS —— Rnd
—— cvs 112 LP Upper Bound

Expected profit
o
s
Expected profit
~
S

oy
o

Expected profit

60 30
RESCUE —— SRS —— Rnd

—=— Sumita —— cvs 1/2 LP Upper Bound
PickConfigs

w
=)

=3 PickConfigs BENl Rnd gz

IS
=)

w
8
)
Expected profit

K
\

S
g

20 30 40 5

0 60 18 20 22 24 26 28
Average task arrival probability (%)

SLA deadline

Fig. 7. Expected profit under varying task arrival probability and SLA.

1e2 1e2

RESCUE SRS
= sumita o covs
101 == Pickconfigs =3 Rnd

RESCUE SRS
3 Sumita D cvs
3 PickConfigs =33 Rnd

L L

Number of task types

=

0

i ﬂ‘

o 1

ﬂ

Expected profit
Expected profit

]
6 7 [] 10
Number of servers

Fig. 9. Scalability on server/task type number.

profit than the next-best at a 70% arrival rate. When temporal
constraints are relaxed, RESCUE leverages the increased flex-
ibility, maintaining an empirical competitive ratio of 74%-—
87%. Baselines, in contrast, perform in fluctuations, which
showcases that RESCUE’s value-based framework correctly
prices both resource competition and temporal flexibility, a
crucial capability for real-world online systems.

Adaptability to Service Profile Heterogeneity. We then
evaluate performance against service profile heterogeneity,
which we introduce by varying the number of available profiles
and the stochasticity of their duration distributions, as shown
in Fig. 8. The results show that RESCUE is highly adaptive.
In the left part of Fig. 8, as profiles increase, baseline perfor-
mance often degrades due to a more complex decision-making
environment, while RESCUE maintains a strong competitive
ratio of 0.61-0.87. Its advantage is most evident in complex
scenarios; for example, it outperforms the best baseline by
73% when 8 profiles are available and achieves an outstanding
87.5% competitive ratio. In addition, the right part of Fig. 8
also reveals RESCUE’s adaptability to different retraining
duration distributions, yielding an average of 70% more profit
than the baselines. This highlights the strength of its unified
decision framework, which effectively evaluates diverse and
uncertain options where simple heuristics fail.

Scalability. Finally, we evaluate the scalability of our frame-
work by increasing both resource and complexity. Specifically,
we scale the number of servers and diversify task types,
as shown in Fig. 9. RESCUE exhibits robust and scalable
performance in both scenarios, while baseline approaches
struggle to effectively leverage the larger scale. As the system
size expands, RESCUE consistently maintains higher profits,
achieving 83% greater profit than the best baseline with 6
servers and 98% more with 18 distinct task types. This sup-
ports that as edge computing systems grow in size and com-
plexity, proactive and foresightful planning becomes essential.

=)

3 4 5 6 7 8
Number of service profiles

normal bimodal

Duration Distribution Type

heavy tail

Fig. 8. Expected profit under varying service profile number and distribution.

The ability of RESCUE to perform an effective estimate of the
continuously expanding resources and complexities highlights
its applicability to large-scale real-world applications.

Summary. The simulation results consistently and compre-
hensively validate the superiority of RESCUE. Quantitatively,
RESCUE outperforms all baselines across all evaluated scenar-
ios, achieving an average profit increase of over 60% compared
to the next-best performing methods. Furthermore, it yields a
high empirical competitive ratio against the offline LP-based
upper bound, typically ranging between 0.51-0.87, robustly
exceeding its 1/2 theoretical guarantee. These results stem
from a key design advantage: by applying LP-guided value
functions, RESCUE replaces short-sighted heuristics with a
foresightful mechanism that intelligently prices future opportu-
nities. This core capability drives its performance, robustness,
and scalability, making it an effective and reliable solution for
scheduling model retraining tasks on UEC.

VII. CONCLUSION

In this paper, we present RESCUE, a novel online framework
that effectively transforms the challenge of Underutilized Edge
Computing (UEC) resources into opportunities for model
retraining. By formulating the problem as a stochastic joint
optimization, our LP-guided two-stage algorithm navigates
real-time uncertainties to make robust scheduling decisions,
backed by a provable 1/2-competitive ratio. Extensive evalua-
tions confirm that RESCUE not only achieves a high empirical
competitive ratio of 0.51-0.87 but also yields an average
profit increase exceeding 60% over baseline algorithms. This
work demonstrates that a unified and foresight-driven approach
can practically and efficiently unlock the vast potential of
UEC, paving the way for more sustainable and powerful
edge intelligence. Future work will focus on extending our
framework to handle unknown task arrival distributions and
validating its performance in a real-world edge testbed.

VIII. ACKNOWLEDGE

This work is supported in part by National Key R&D
Program of China No. 2023 YFC3605800, the National Natural
Science Foundation of China Grant 62472090, 62402102,
Jiangsu Province Frontier Technology R&D Program No.
BF2025615, the National Natural Science Foundation of
Jiangsu Grants BK20242026, BK20241275, the Jiangsu
Provincial Key Laboratory of Network and Information Se-
curity Grant BM2003201, and the Collaborative Innovation
Center of Novel Software Technology.

[1]

[2]

[3

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

Z. Cao, Y. Cheng, Z. Zhou, A. Lu, Y. Hu, J. Liu, M. Zhang, and Z. Li,
“Patching in order: Efficient on-device model fine-tuning for multi-dnn
vision applications,” IEEE Transactions on Mobile Computing, 2024.
M. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan,
and F. Hussain, “Machine learning at the network edge: A survey,” ACM
Computing Surveys (CSUR), vol. 54, no. 8, pp. 1-37, 2021.

L. Wang, Z. Yu, H. Yu, S. Liu, Y. Xie, B. Guo, and Y. Liu, “Adaevo:
Edge-assisted continuous and timely dnn model evolution for mobile
devices,” IEEE Transactions on Mobile Computing, 2023.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510-4520.

Y. Kong, P. Yang, and Y. Cheng, “Edge-assisted on-device model update
for video analytics in adverse environments,” in Proceedings of the 31st
ACM International Conference on Multimedia, 2023, pp. 9051-9060.
R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu, N. Kar-
ianakis, K. Hsieh, P. Bahl, and I. Stoica, “Ekya: Continuous learning
of video analytics models on edge compute servers,” in /9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2022, pp. 119-135.

Y. Kim, C. Oh, J. Hwang, W. Kim, S. Oh, Y. Lee, H. Sharma, A. Yaz-
danbakhsh, and J. Park, “Dacapo: Accelerating continuous learning
in autonomous systems for video analytics,” in 2024 ACM/IEEE 51st
Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2024, pp. 1246-1261.

T. Li, H. Wang, Q. Li, Y. Jiang, and Z. Yuan, “CL-Shield: A continuous
learning system for protecting user privacy,” IEEE Transactions on
Mobile Computing, 2024.

S. Josilo and G. Ddn, “Computation offloading scheduling for periodic
tasks in mobile edge computing,” IEEE/ACM Transactions on Network-
ing, vol. 28, no. 2, pp. 667-680, 2020.

M. Khani, G. Ananthanarayanan, K. Hsieh, J. Jiang, R. Netravali,
Y. Shu, M. Alizadeh, and V. Bahl, “RECL: Responsive resource-efficient
continuous learning for video analytics,” in 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2023, pp. 917—
932.

L. Wang, K. Lu, N. Zhang, X. Qu, J. Wang, J. Wan, G. Li, and J. Xiao,
“Shoggoth: Towards efficient edge-cloud collaborative real-time video
inference via adaptive online learning,” in 2023 60th ACM/IEEE Design
Automation Conference (DAC). 1EEE, 2023, pp. 1-6.

H. Liao, G. Tang, D. Guo, Y. Wang, and R. Cao, “Rethinking low-carbon
edge computing system design with renewable energy sharing,” in Pro-
ceedings of the 53rd International Conference on Parallel Processing,
2024, pp. 950-960.

H. Liu, X. Long, Z. Li, S. Long, R. Ran, and H.-M. Wang, “Joint
optimization of request assignment and computing resource allocation
in multi-access edge computing,” IEEE Transactions on Services Com-
puting, vol. 16, no. 2, pp. 1254-1267, 2022.

Y. Guo, J. Ge, P. Guo, Y. Chai, T. Li, M. Shi, Y. Tu, and J. Ouyang,
“Pass: Predictive auto-scaling system for large-scale enterprise web
applications,” in Proceedings of the ACM Web Conference 2024, 2024,
pp. 2747-2758.

H. Qiu, W. Mao, C. Wang, H. Franke, A. Youssef, Z. T. Kalbarczyk,
T. Bagar, and R. K. Iyer, “Aware: Automate workload autoscaling with
reinforcement learning in production cloud systems,” in 2023 USENIX
Annual Technical Conference (ATC), 2023, pp. 387-402.

M. Liwang and X. Wang, “Overbooking-empowered computing resource
provisioning in cloud-aided mobile edge networks,” IEEE/ACM Trans-
actions on Networking, vol. 30, no. 5, pp. 2289-2303, 2022.

Z. Tang, F. Mou, J. Lou, W. Jia, Y. Wu, and W. Zhao, “Joint resource
overbooking and container scheduling in edge computing,” IEEE Trans-
actions on Mobile Computing, 2024.

H. Tian, S. Li, A. Wang, W. Wang, T. Wu, and H. Yang,
“Owl: Performance-aware scheduling for resource-efficient function-
as-a-service cloud,” in Proceedings of the 13th Symposium on Cloud
Computing, 2022, pp. 78-93.

Q. Liu, Y. Yang, D. Du, Y. Xia, P. Zhang, J. Feng, J. R. Larus,
and H. Chen, “Harmonizing efficiency and practicability: optimizing
resource utilization in serverless computing with jiagu,” in 2024 USENIX
Annual Technical Conference (ATC), 2024, pp. 1-17.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[35]

[36]
[37]

(38]

[39]
[40]

[41]

DevOps, “The cloud is booming, but so is cloud waste,”
https://devops.com/the-cloud-is-booming-but-so-is-cloud-waste/, 2025.
W. Cao, J. Gu, Z. Ming, Z. Cai, Y. Wang, C. Ji, Z. Xiao, Y. Feng,
Y. Liu, and L.-J. Zhang, “Flexible computing: A new framework for
improving resource allocation and scheduling in elastic computing,”
IEEE Transactions on Services Computing, 2024.

M. Zakarya, L. Gillam, M. R. C. Qazani, A. A. Khan, K. Salah,
and O. Rana, “Backfillme: an energy and performance efficient virtual
machine scheduler for iaas datacenters,” IEEE Transactions on Services
Computing, 2025.

H. Cai, Z. Zhou, and Q. Huang, “Online resource allocation for
edge intelligence with colocated model retraining and inference,” in
IEEE INFOCOM 2024-IEEE Conference on Computer Communications.
IEEE, 2024, pp. 1900-1909.

Y. Zeng, R. Zhou, L. Jiao, Z. Han, J. Yu, and Y. Ma, “Efficient
online dnn inference with continuous learning in edge computing,” in
2024 IEEE/ACM 32nd International Symposium on Quality of Service
(IWQoS). 1EEE, 2024, pp. 1-10.

S. S. Shubha and H. Shen, “Adainf: Data drift adaptive scheduling for
accurate and slo-guaranteed multiple-model inference serving at edge
servers,” in Proceedings of the ACM SIGCOMM 2023 Conference, 2023,
pp. 473-485.

Y. Zeng, R. Zhou, L. Jiao, and R. Zhang, “Online scheduling of
edge multiple-model inference with dag structure and retraining,” in
IEEE INFOCOM 2025-IEEE Conference on Computer Communications.
IEEE, 2025, pp. 1-10.

Y. Wang, L. Huang, Z. Wang, V. Kalavri, and 1. Matta, “CAPSys:
Contention-aware task placement for data stream processing,” in Pro-
ceedings of the Twentieth European Conference on Computer Systems,
2025, pp. 654-670.

R. Bhardwaj, K. Kandasamy, A. Biswal, W. Guo, B. Hindman, J. Gon-
zalez, M. Jordan, and I. Stoica, “Cilantro: Performance-aware resource
allocation for general objectives via online feedback,” in 17th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2023, pp. 623-643.

H. Sumita, S. Ito, K. Takemura, D. Hatano, T. Fukunaga, N. Kakimura,
and K.-i. Kawarabayashi, “Online task assignment problems with
reusable resources,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 5, 2022, pp. 5199-5207.

J. P. Dickerson, K. A. Sankararaman, A. Srinivasan, and P. Xu, “Allo-
cation problems in ride-sharing platforms: Online matching with offline
reusable resources,” ACM Transactions on Economics and Computation
(TEAC), vol. 9, no. 3, pp. 1-17, 2021.

A. Saadallah, L. Moreira-Matias, R. Sousa, J. Khiari, E. Jenelius, and
J. Gama, “Bright—drift-aware demand predictions for taxi networks,”
IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 2,
pp. 234-245, 2018.

Q. Wang and X. Chu, “GPGPU performance estimation with core
and memory frequency scaling,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 12, pp. 2865-2881, 2020.

D. Vela, A. Sharp, R. Zhang, T. Nguyen, A. Hoang, and O. S. Pianykh,
“Temporal quality degradation in ai models,” Scientific reports, vol. 12,
no. 1, p. 11654, 2022.

S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest:
Efficient performance prediction for large-scale advanced analytics,” in
13th USENIX symposium on networked systems design and implemen-
tation (NSDI), 2016, pp. 363-378.

C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable
effectiveness of data in deep learning era,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 843-852.

G. B. Dantzig, Linear Programming and Extensions. Princeton
University Press, 1960.

O. D. Anderson, “Kendall’s advanced theory of statistics, volume 1:
Distribution theory,” 1988.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

“CIFAR-10-C,” https://zenodo.org/records/2535967.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural
language models,” arXiv preprint arXiv:2001.08361, 2020.

SciPy, “scipy.optimize.nnls,” https://docs.scipy.org/doc/scipy-
0.14.0/reference/generated/scipy.optimize.nnls.html, 2014.

